Metamath Proof Explorer


Theorem ttglem

Description: Lemma for ttgbas , ttgvsca etc. (Contributed by Thierry Arnoux, 15-Apr-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses ttgval.n G = to𝒢 Tarski H
ttglem.e E = Slot E ndx
ttglem.l E ndx Line 𝒢 ndx
ttglem.i E ndx Itv ndx
Assertion ttglem E H = E G

Proof

Step Hyp Ref Expression
1 ttgval.n G = to𝒢 Tarski H
2 ttglem.e E = Slot E ndx
3 ttglem.l E ndx Line 𝒢 ndx
4 ttglem.i E ndx Itv ndx
5 2 4 setsnid E H = E H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x
6 2 3 setsnid E H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x = E H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x sSet Line 𝒢 ndx x Base H , y Base H z Base H | z x Itv G y x z Itv G y y x Itv G z
7 5 6 eqtri E H = E H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x sSet Line 𝒢 ndx x Base H , y Base H z Base H | z x Itv G y x z Itv G y y x Itv G z
8 eqid Base H = Base H
9 eqid - H = - H
10 eqid H = H
11 eqid Itv G = Itv G
12 1 8 9 10 11 ttgval H V G = H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x sSet Line 𝒢 ndx x Base H , y Base H z Base H | z x Itv G y x z Itv G y y x Itv G z Itv G = x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x
13 12 simpld H V G = H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x sSet Line 𝒢 ndx x Base H , y Base H z Base H | z x Itv G y x z Itv G y y x Itv G z
14 13 fveq2d H V E G = E H sSet Itv ndx x Base H , y Base H z Base H | k 0 1 z - H x = k H y - H x sSet Line 𝒢 ndx x Base H , y Base H z Base H | z x Itv G y x z Itv G y y x Itv G z
15 7 14 eqtr4id H V E H = E G
16 2 str0 = E
17 16 eqcomi E =
18 17 1 fveqprc ¬ H V E H = E G
19 15 18 pm2.61i E H = E G