Step |
Hyp |
Ref |
Expression |
1 |
|
ttgval.n |
|- G = ( toTG ` H ) |
2 |
|
ttglem.e |
|- E = Slot ( E ` ndx ) |
3 |
|
ttglem.l |
|- ( E ` ndx ) =/= ( LineG ` ndx ) |
4 |
|
ttglem.i |
|- ( E ` ndx ) =/= ( Itv ` ndx ) |
5 |
2 4
|
setsnid |
|- ( E ` H ) = ( E ` ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) ) |
6 |
2 3
|
setsnid |
|- ( E ` ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) ) = ( E ` ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) |
7 |
5 6
|
eqtri |
|- ( E ` H ) = ( E ` ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) |
8 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
9 |
|
eqid |
|- ( -g ` H ) = ( -g ` H ) |
10 |
|
eqid |
|- ( .s ` H ) = ( .s ` H ) |
11 |
|
eqid |
|- ( Itv ` G ) = ( Itv ` G ) |
12 |
1 8 9 10 11
|
ttgval |
|- ( H e. _V -> ( G = ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) /\ ( Itv ` G ) = ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) ) ) |
13 |
12
|
simpld |
|- ( H e. _V -> G = ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) |
14 |
13
|
fveq2d |
|- ( H e. _V -> ( E ` G ) = ( E ` ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) ) |
15 |
7 14
|
eqtr4id |
|- ( H e. _V -> ( E ` H ) = ( E ` G ) ) |
16 |
2
|
str0 |
|- (/) = ( E ` (/) ) |
17 |
16
|
eqcomi |
|- ( E ` (/) ) = (/) |
18 |
17 1
|
fveqprc |
|- ( -. H e. _V -> ( E ` H ) = ( E ` G ) ) |
19 |
15 18
|
pm2.61i |
|- ( E ` H ) = ( E ` G ) |