| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttgval.n |  |-  G = ( toTG ` H ) | 
						
							| 2 |  | ttgbas.1 |  |-  B = ( Base ` H ) | 
						
							| 3 |  | baseid |  |-  Base = Slot ( Base ` ndx ) | 
						
							| 4 |  | slotslnbpsd |  |-  ( ( ( LineG ` ndx ) =/= ( Base ` ndx ) /\ ( LineG ` ndx ) =/= ( +g ` ndx ) ) /\ ( ( LineG ` ndx ) =/= ( .s ` ndx ) /\ ( LineG ` ndx ) =/= ( dist ` ndx ) ) ) | 
						
							| 5 |  | simpll |  |-  ( ( ( ( LineG ` ndx ) =/= ( Base ` ndx ) /\ ( LineG ` ndx ) =/= ( +g ` ndx ) ) /\ ( ( LineG ` ndx ) =/= ( .s ` ndx ) /\ ( LineG ` ndx ) =/= ( dist ` ndx ) ) ) -> ( LineG ` ndx ) =/= ( Base ` ndx ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( LineG ` ndx ) =/= ( Base ` ndx ) | 
						
							| 7 | 6 | necomi |  |-  ( Base ` ndx ) =/= ( LineG ` ndx ) | 
						
							| 8 |  | slotsinbpsd |  |-  ( ( ( Itv ` ndx ) =/= ( Base ` ndx ) /\ ( Itv ` ndx ) =/= ( +g ` ndx ) ) /\ ( ( Itv ` ndx ) =/= ( .s ` ndx ) /\ ( Itv ` ndx ) =/= ( dist ` ndx ) ) ) | 
						
							| 9 |  | simpll |  |-  ( ( ( ( Itv ` ndx ) =/= ( Base ` ndx ) /\ ( Itv ` ndx ) =/= ( +g ` ndx ) ) /\ ( ( Itv ` ndx ) =/= ( .s ` ndx ) /\ ( Itv ` ndx ) =/= ( dist ` ndx ) ) ) -> ( Itv ` ndx ) =/= ( Base ` ndx ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( Itv ` ndx ) =/= ( Base ` ndx ) | 
						
							| 11 | 10 | necomi |  |-  ( Base ` ndx ) =/= ( Itv ` ndx ) | 
						
							| 12 | 1 3 7 11 | ttglem |  |-  ( Base ` H ) = ( Base ` G ) | 
						
							| 13 | 2 12 | eqtri |  |-  B = ( Base ` G ) |