Metamath Proof Explorer


Theorem ttgbas

Description: The base set of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses ttgval.n ⊒G=to𝒒Tarski⁑H
ttgbas.1 ⊒B=BaseH
Assertion ttgbas ⊒B=BaseG

Proof

Step Hyp Ref Expression
1 ttgval.n ⊒G=to𝒒Tarski⁑H
2 ttgbas.1 ⊒B=BaseH
3 baseid ⊒Base=SlotBasendx
4 slotslnbpsd ⊒Line𝒒⁑ndxβ‰ Basendx∧Line𝒒⁑ndxβ‰ +ndx∧Line𝒒⁑ndxβ‰ β‹…ndx∧Line𝒒⁑ndxβ‰ dist⁑ndx
5 simpll ⊒Line𝒒⁑ndxβ‰ Basendx∧Line𝒒⁑ndxβ‰ +ndx∧Line𝒒⁑ndxβ‰ β‹…ndx∧Line𝒒⁑ndxβ‰ dist⁑ndxβ†’Line𝒒⁑ndxβ‰ Basendx
6 4 5 ax-mp ⊒Line𝒒⁑ndxβ‰ Basendx
7 6 necomi ⊒Basendxβ‰ Line𝒒⁑ndx
8 slotsinbpsd ⊒Itv⁑ndxβ‰ Basendx∧Itv⁑ndxβ‰ +ndx∧Itv⁑ndxβ‰ β‹…ndx∧Itv⁑ndxβ‰ dist⁑ndx
9 simpll ⊒Itv⁑ndxβ‰ Basendx∧Itv⁑ndxβ‰ +ndx∧Itv⁑ndxβ‰ β‹…ndx∧Itv⁑ndxβ‰ dist⁑ndxβ†’Itv⁑ndxβ‰ Basendx
10 8 9 ax-mp ⊒Itv⁑ndxβ‰ Basendx
11 10 necomi ⊒Basendxβ‰ Itv⁑ndx
12 1 3 7 11 ttglem ⊒BaseH=BaseG
13 2 12 eqtri ⊒B=BaseG