Metamath Proof Explorer


Theorem slotsinbpsd

Description: The slots Base , +g , .s and dist are different from the slot Itv . Formerly part of ttglem and proofs using it. (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion slotsinbpsd ItvndxBasendxItvndx+ndxItvndxndxItvndxdistndx

Proof

Step Hyp Ref Expression
1 itvndx Itvndx=16
2 1re 1
3 1nn 1
4 6nn0 60
5 1nn0 10
6 1lt10 1<10
7 3 4 5 6 declti 1<16
8 2 7 gtneii 161
9 basendx Basendx=1
10 8 9 neeqtrri 16Basendx
11 1 10 eqnetri ItvndxBasendx
12 2re 2
13 2nn0 20
14 2lt10 2<10
15 3 4 13 14 declti 2<16
16 12 15 gtneii 162
17 plusgndx +ndx=2
18 16 17 neeqtrri 16+ndx
19 1 18 eqnetri Itvndx+ndx
20 11 19 pm3.2i ItvndxBasendxItvndx+ndx
21 6re 6
22 6lt10 6<10
23 3 4 4 22 declti 6<16
24 21 23 gtneii 166
25 vscandx ndx=6
26 24 25 neeqtrri 16ndx
27 1 26 eqnetri Itvndxndx
28 2nn 2
29 5 28 decnncl 12
30 29 nnrei 12
31 6nn 6
32 2lt6 2<6
33 5 13 31 32 declt 12<16
34 30 33 gtneii 1612
35 dsndx distndx=12
36 34 35 neeqtrri 16distndx
37 1 36 eqnetri Itvndxdistndx
38 27 37 pm3.2i ItvndxndxItvndxdistndx
39 20 38 pm3.2i ItvndxBasendxItvndx+ndxItvndxndxItvndxdistndx