Metamath Proof Explorer


Theorem slotsinbpsd

Description: The slots Base , +g , .s and dist are different from the slot Itv . Formerly part of ttglem and proofs using it. (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion slotsinbpsd Itv ndx Base ndx Itv ndx + ndx Itv ndx ndx Itv ndx dist ndx

Proof

Step Hyp Ref Expression
1 itvndx Itv ndx = 16
2 1re 1
3 1nn 1
4 6nn0 6 0
5 1nn0 1 0
6 1lt10 1 < 10
7 3 4 5 6 declti 1 < 16
8 2 7 gtneii 16 1
9 basendx Base ndx = 1
10 8 9 neeqtrri 16 Base ndx
11 1 10 eqnetri Itv ndx Base ndx
12 2re 2
13 2nn0 2 0
14 2lt10 2 < 10
15 3 4 13 14 declti 2 < 16
16 12 15 gtneii 16 2
17 plusgndx + ndx = 2
18 16 17 neeqtrri 16 + ndx
19 1 18 eqnetri Itv ndx + ndx
20 11 19 pm3.2i Itv ndx Base ndx Itv ndx + ndx
21 6re 6
22 6lt10 6 < 10
23 3 4 4 22 declti 6 < 16
24 21 23 gtneii 16 6
25 vscandx ndx = 6
26 24 25 neeqtrri 16 ndx
27 1 26 eqnetri Itv ndx ndx
28 2nn 2
29 5 28 decnncl 12
30 29 nnrei 12
31 6nn 6
32 2lt6 2 < 6
33 5 13 31 32 declt 12 < 16
34 30 33 gtneii 16 12
35 dsndx dist ndx = 12
36 34 35 neeqtrri 16 dist ndx
37 1 36 eqnetri Itv ndx dist ndx
38 27 37 pm3.2i Itv ndx ndx Itv ndx dist ndx
39 20 38 pm3.2i Itv ndx Base ndx Itv ndx + ndx Itv ndx ndx Itv ndx dist ndx