Metamath Proof Explorer


Theorem slotsinbpsd

Description: The slots Base , +g , .s and dist are different from the slot Itv . Formerly part of ttglem and proofs using it. (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion slotsinbpsd ( ( ( Itv ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( +g ‘ ndx ) ) ∧ ( ( Itv ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( dist ‘ ndx ) ) )

Proof

Step Hyp Ref Expression
1 itvndx ( Itv ‘ ndx ) = 1 6
2 1re 1 ∈ ℝ
3 1nn 1 ∈ ℕ
4 6nn0 6 ∈ ℕ0
5 1nn0 1 ∈ ℕ0
6 1lt10 1 < 1 0
7 3 4 5 6 declti 1 < 1 6
8 2 7 gtneii 1 6 ≠ 1
9 basendx ( Base ‘ ndx ) = 1
10 8 9 neeqtrri 1 6 ≠ ( Base ‘ ndx )
11 1 10 eqnetri ( Itv ‘ ndx ) ≠ ( Base ‘ ndx )
12 2re 2 ∈ ℝ
13 2nn0 2 ∈ ℕ0
14 2lt10 2 < 1 0
15 3 4 13 14 declti 2 < 1 6
16 12 15 gtneii 1 6 ≠ 2
17 plusgndx ( +g ‘ ndx ) = 2
18 16 17 neeqtrri 1 6 ≠ ( +g ‘ ndx )
19 1 18 eqnetri ( Itv ‘ ndx ) ≠ ( +g ‘ ndx )
20 11 19 pm3.2i ( ( Itv ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( +g ‘ ndx ) )
21 6re 6 ∈ ℝ
22 6lt10 6 < 1 0
23 3 4 4 22 declti 6 < 1 6
24 21 23 gtneii 1 6 ≠ 6
25 vscandx ( ·𝑠 ‘ ndx ) = 6
26 24 25 neeqtrri 1 6 ≠ ( ·𝑠 ‘ ndx )
27 1 26 eqnetri ( Itv ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
28 2nn 2 ∈ ℕ
29 5 28 decnncl 1 2 ∈ ℕ
30 29 nnrei 1 2 ∈ ℝ
31 6nn 6 ∈ ℕ
32 2lt6 2 < 6
33 5 13 31 32 declt 1 2 < 1 6
34 30 33 gtneii 1 6 ≠ 1 2
35 dsndx ( dist ‘ ndx ) = 1 2
36 34 35 neeqtrri 1 6 ≠ ( dist ‘ ndx )
37 1 36 eqnetri ( Itv ‘ ndx ) ≠ ( dist ‘ ndx )
38 27 37 pm3.2i ( ( Itv ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( dist ‘ ndx ) )
39 20 38 pm3.2i ( ( ( Itv ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( +g ‘ ndx ) ) ∧ ( ( Itv ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( dist ‘ ndx ) ) )