Description: The slots Base , +g , .s and dist are different from the slot Itv . Formerly part of ttglem and proofs using it. (Contributed by AV, 29-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | slotsinbpsd | ⊢ ( ( ( Itv ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( +g ‘ ndx ) ) ∧ ( ( Itv ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( dist ‘ ndx ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itvndx | ⊢ ( Itv ‘ ndx ) = ; 1 6 | |
2 | 1re | ⊢ 1 ∈ ℝ | |
3 | 1nn | ⊢ 1 ∈ ℕ | |
4 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
5 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 | ⊢ 1 < ; 1 0 | |
7 | 3 4 5 6 | declti | ⊢ 1 < ; 1 6 |
8 | 2 7 | gtneii | ⊢ ; 1 6 ≠ 1 |
9 | basendx | ⊢ ( Base ‘ ndx ) = 1 | |
10 | 8 9 | neeqtrri | ⊢ ; 1 6 ≠ ( Base ‘ ndx ) |
11 | 1 10 | eqnetri | ⊢ ( Itv ‘ ndx ) ≠ ( Base ‘ ndx ) |
12 | 2re | ⊢ 2 ∈ ℝ | |
13 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
14 | 2lt10 | ⊢ 2 < ; 1 0 | |
15 | 3 4 13 14 | declti | ⊢ 2 < ; 1 6 |
16 | 12 15 | gtneii | ⊢ ; 1 6 ≠ 2 |
17 | plusgndx | ⊢ ( +g ‘ ndx ) = 2 | |
18 | 16 17 | neeqtrri | ⊢ ; 1 6 ≠ ( +g ‘ ndx ) |
19 | 1 18 | eqnetri | ⊢ ( Itv ‘ ndx ) ≠ ( +g ‘ ndx ) |
20 | 11 19 | pm3.2i | ⊢ ( ( Itv ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( +g ‘ ndx ) ) |
21 | 6re | ⊢ 6 ∈ ℝ | |
22 | 6lt10 | ⊢ 6 < ; 1 0 | |
23 | 3 4 4 22 | declti | ⊢ 6 < ; 1 6 |
24 | 21 23 | gtneii | ⊢ ; 1 6 ≠ 6 |
25 | vscandx | ⊢ ( ·𝑠 ‘ ndx ) = 6 | |
26 | 24 25 | neeqtrri | ⊢ ; 1 6 ≠ ( ·𝑠 ‘ ndx ) |
27 | 1 26 | eqnetri | ⊢ ( Itv ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
28 | 2nn | ⊢ 2 ∈ ℕ | |
29 | 5 28 | decnncl | ⊢ ; 1 2 ∈ ℕ |
30 | 29 | nnrei | ⊢ ; 1 2 ∈ ℝ |
31 | 6nn | ⊢ 6 ∈ ℕ | |
32 | 2lt6 | ⊢ 2 < 6 | |
33 | 5 13 31 32 | declt | ⊢ ; 1 2 < ; 1 6 |
34 | 30 33 | gtneii | ⊢ ; 1 6 ≠ ; 1 2 |
35 | dsndx | ⊢ ( dist ‘ ndx ) = ; 1 2 | |
36 | 34 35 | neeqtrri | ⊢ ; 1 6 ≠ ( dist ‘ ndx ) |
37 | 1 36 | eqnetri | ⊢ ( Itv ‘ ndx ) ≠ ( dist ‘ ndx ) |
38 | 27 37 | pm3.2i | ⊢ ( ( Itv ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( dist ‘ ndx ) ) |
39 | 20 38 | pm3.2i | ⊢ ( ( ( Itv ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( +g ‘ ndx ) ) ∧ ( ( Itv ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( Itv ‘ ndx ) ≠ ( dist ‘ ndx ) ) ) |