Description: The slots Base , +g , .s and dist are different from the slot LineG . Formerly part of ttglem and proofs using it. (Contributed by AV, 29-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | slotslnbpsd | ⊢ ( ( ( LineG ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( +g ‘ ndx ) ) ∧ ( ( LineG ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( dist ‘ ndx ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lngndx | ⊢ ( LineG ‘ ndx ) = ; 1 7 | |
2 | 1re | ⊢ 1 ∈ ℝ | |
3 | 1nn | ⊢ 1 ∈ ℕ | |
4 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
5 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 | ⊢ 1 < ; 1 0 | |
7 | 3 4 5 6 | declti | ⊢ 1 < ; 1 7 |
8 | 2 7 | gtneii | ⊢ ; 1 7 ≠ 1 |
9 | basendx | ⊢ ( Base ‘ ndx ) = 1 | |
10 | 8 9 | neeqtrri | ⊢ ; 1 7 ≠ ( Base ‘ ndx ) |
11 | 1 10 | eqnetri | ⊢ ( LineG ‘ ndx ) ≠ ( Base ‘ ndx ) |
12 | 2re | ⊢ 2 ∈ ℝ | |
13 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
14 | 2lt10 | ⊢ 2 < ; 1 0 | |
15 | 3 4 13 14 | declti | ⊢ 2 < ; 1 7 |
16 | 12 15 | gtneii | ⊢ ; 1 7 ≠ 2 |
17 | plusgndx | ⊢ ( +g ‘ ndx ) = 2 | |
18 | 16 17 | neeqtrri | ⊢ ; 1 7 ≠ ( +g ‘ ndx ) |
19 | 1 18 | eqnetri | ⊢ ( LineG ‘ ndx ) ≠ ( +g ‘ ndx ) |
20 | 11 19 | pm3.2i | ⊢ ( ( LineG ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( +g ‘ ndx ) ) |
21 | 6re | ⊢ 6 ∈ ℝ | |
22 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
23 | 6lt10 | ⊢ 6 < ; 1 0 | |
24 | 3 4 22 23 | declti | ⊢ 6 < ; 1 7 |
25 | 21 24 | gtneii | ⊢ ; 1 7 ≠ 6 |
26 | vscandx | ⊢ ( ·𝑠 ‘ ndx ) = 6 | |
27 | 25 26 | neeqtrri | ⊢ ; 1 7 ≠ ( ·𝑠 ‘ ndx ) |
28 | 1 27 | eqnetri | ⊢ ( LineG ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
29 | 2nn | ⊢ 2 ∈ ℕ | |
30 | 5 29 | decnncl | ⊢ ; 1 2 ∈ ℕ |
31 | 30 | nnrei | ⊢ ; 1 2 ∈ ℝ |
32 | 7nn | ⊢ 7 ∈ ℕ | |
33 | 2lt7 | ⊢ 2 < 7 | |
34 | 5 13 32 33 | declt | ⊢ ; 1 2 < ; 1 7 |
35 | 31 34 | gtneii | ⊢ ; 1 7 ≠ ; 1 2 |
36 | dsndx | ⊢ ( dist ‘ ndx ) = ; 1 2 | |
37 | 35 36 | neeqtrri | ⊢ ; 1 7 ≠ ( dist ‘ ndx ) |
38 | 1 37 | eqnetri | ⊢ ( LineG ‘ ndx ) ≠ ( dist ‘ ndx ) |
39 | 28 38 | pm3.2i | ⊢ ( ( LineG ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( dist ‘ ndx ) ) |
40 | 20 39 | pm3.2i | ⊢ ( ( ( LineG ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( +g ‘ ndx ) ) ∧ ( ( LineG ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( dist ‘ ndx ) ) ) |