Metamath Proof Explorer


Theorem slotslnbpsd

Description: The slots Base , +g , .s and dist are different from the slot LineG . Formerly part of ttglem and proofs using it. (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion slotslnbpsd ( ( ( LineG ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( +g ‘ ndx ) ) ∧ ( ( LineG ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( dist ‘ ndx ) ) )

Proof

Step Hyp Ref Expression
1 lngndx ( LineG ‘ ndx ) = 1 7
2 1re 1 ∈ ℝ
3 1nn 1 ∈ ℕ
4 7nn0 7 ∈ ℕ0
5 1nn0 1 ∈ ℕ0
6 1lt10 1 < 1 0
7 3 4 5 6 declti 1 < 1 7
8 2 7 gtneii 1 7 ≠ 1
9 basendx ( Base ‘ ndx ) = 1
10 8 9 neeqtrri 1 7 ≠ ( Base ‘ ndx )
11 1 10 eqnetri ( LineG ‘ ndx ) ≠ ( Base ‘ ndx )
12 2re 2 ∈ ℝ
13 2nn0 2 ∈ ℕ0
14 2lt10 2 < 1 0
15 3 4 13 14 declti 2 < 1 7
16 12 15 gtneii 1 7 ≠ 2
17 plusgndx ( +g ‘ ndx ) = 2
18 16 17 neeqtrri 1 7 ≠ ( +g ‘ ndx )
19 1 18 eqnetri ( LineG ‘ ndx ) ≠ ( +g ‘ ndx )
20 11 19 pm3.2i ( ( LineG ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( +g ‘ ndx ) )
21 6re 6 ∈ ℝ
22 6nn0 6 ∈ ℕ0
23 6lt10 6 < 1 0
24 3 4 22 23 declti 6 < 1 7
25 21 24 gtneii 1 7 ≠ 6
26 vscandx ( ·𝑠 ‘ ndx ) = 6
27 25 26 neeqtrri 1 7 ≠ ( ·𝑠 ‘ ndx )
28 1 27 eqnetri ( LineG ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
29 2nn 2 ∈ ℕ
30 5 29 decnncl 1 2 ∈ ℕ
31 30 nnrei 1 2 ∈ ℝ
32 7nn 7 ∈ ℕ
33 2lt7 2 < 7
34 5 13 32 33 declt 1 2 < 1 7
35 31 34 gtneii 1 7 ≠ 1 2
36 dsndx ( dist ‘ ndx ) = 1 2
37 35 36 neeqtrri 1 7 ≠ ( dist ‘ ndx )
38 1 37 eqnetri ( LineG ‘ ndx ) ≠ ( dist ‘ ndx )
39 28 38 pm3.2i ( ( LineG ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( dist ‘ ndx ) )
40 20 39 pm3.2i ( ( ( LineG ‘ ndx ) ≠ ( Base ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( +g ‘ ndx ) ) ∧ ( ( LineG ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( LineG ‘ ndx ) ≠ ( dist ‘ ndx ) ) )