Step |
Hyp |
Ref |
Expression |
1 |
|
ttgval.n |
⊢ 𝐺 = ( toTG ‘ 𝐻 ) |
2 |
|
ttglem.e |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
3 |
|
ttglem.l |
⊢ ( 𝐸 ‘ ndx ) ≠ ( LineG ‘ ndx ) |
4 |
|
ttglem.i |
⊢ ( 𝐸 ‘ ndx ) ≠ ( Itv ‘ ndx ) |
5 |
2 4
|
setsnid |
⊢ ( 𝐸 ‘ 𝐻 ) = ( 𝐸 ‘ ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) ) |
6 |
2 3
|
setsnid |
⊢ ( 𝐸 ‘ ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) ) = ( 𝐸 ‘ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) |
7 |
5 6
|
eqtri |
⊢ ( 𝐸 ‘ 𝐻 ) = ( 𝐸 ‘ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
9 |
|
eqid |
⊢ ( -g ‘ 𝐻 ) = ( -g ‘ 𝐻 ) |
10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐻 ) = ( ·𝑠 ‘ 𝐻 ) |
11 |
|
eqid |
⊢ ( Itv ‘ 𝐺 ) = ( Itv ‘ 𝐺 ) |
12 |
1 8 9 10 11
|
ttgval |
⊢ ( 𝐻 ∈ V → ( 𝐺 = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ∧ ( Itv ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) ) ) |
13 |
12
|
simpld |
⊢ ( 𝐻 ∈ V → 𝐺 = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝐻 ∈ V → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) ) |
15 |
7 14
|
eqtr4id |
⊢ ( 𝐻 ∈ V → ( 𝐸 ‘ 𝐻 ) = ( 𝐸 ‘ 𝐺 ) ) |
16 |
2
|
str0 |
⊢ ∅ = ( 𝐸 ‘ ∅ ) |
17 |
16
|
eqcomi |
⊢ ( 𝐸 ‘ ∅ ) = ∅ |
18 |
17 1
|
fveqprc |
⊢ ( ¬ 𝐻 ∈ V → ( 𝐸 ‘ 𝐻 ) = ( 𝐸 ‘ 𝐺 ) ) |
19 |
15 18
|
pm2.61i |
⊢ ( 𝐸 ‘ 𝐻 ) = ( 𝐸 ‘ 𝐺 ) |