Metamath Proof Explorer


Theorem ttglem

Description: Lemma for ttgbas , ttgvsca etc. (Contributed by Thierry Arnoux, 15-Apr-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses ttgval.n 𝐺 = ( toTG ‘ 𝐻 )
ttglem.e 𝐸 = Slot ( 𝐸 ‘ ndx )
ttglem.l ( 𝐸 ‘ ndx ) ≠ ( LineG ‘ ndx )
ttglem.i ( 𝐸 ‘ ndx ) ≠ ( Itv ‘ ndx )
Assertion ttglem ( 𝐸𝐻 ) = ( 𝐸𝐺 )

Proof

Step Hyp Ref Expression
1 ttgval.n 𝐺 = ( toTG ‘ 𝐻 )
2 ttglem.e 𝐸 = Slot ( 𝐸 ‘ ndx )
3 ttglem.l ( 𝐸 ‘ ndx ) ≠ ( LineG ‘ ndx )
4 ttglem.i ( 𝐸 ‘ ndx ) ≠ ( Itv ‘ ndx )
5 2 4 setsnid ( 𝐸𝐻 ) = ( 𝐸 ‘ ( 𝐻 sSet ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝐻 ) ( 𝑦 ( -g𝐻 ) 𝑥 ) ) } ) ⟩ ) )
6 2 3 setsnid ( 𝐸 ‘ ( 𝐻 sSet ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝐻 ) ( 𝑦 ( -g𝐻 ) 𝑥 ) ) } ) ⟩ ) ) = ( 𝐸 ‘ ( ( 𝐻 sSet ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝐻 ) ( 𝑦 ( -g𝐻 ) 𝑥 ) ) } ) ⟩ ) sSet ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) ⟩ ) )
7 5 6 eqtri ( 𝐸𝐻 ) = ( 𝐸 ‘ ( ( 𝐻 sSet ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝐻 ) ( 𝑦 ( -g𝐻 ) 𝑥 ) ) } ) ⟩ ) sSet ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) ⟩ ) )
8 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
9 eqid ( -g𝐻 ) = ( -g𝐻 )
10 eqid ( ·𝑠𝐻 ) = ( ·𝑠𝐻 )
11 eqid ( Itv ‘ 𝐺 ) = ( Itv ‘ 𝐺 )
12 1 8 9 10 11 ttgval ( 𝐻 ∈ V → ( 𝐺 = ( ( 𝐻 sSet ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝐻 ) ( 𝑦 ( -g𝐻 ) 𝑥 ) ) } ) ⟩ ) sSet ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) ⟩ ) ∧ ( Itv ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝐻 ) ( 𝑦 ( -g𝐻 ) 𝑥 ) ) } ) ) )
13 12 simpld ( 𝐻 ∈ V → 𝐺 = ( ( 𝐻 sSet ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝐻 ) ( 𝑦 ( -g𝐻 ) 𝑥 ) ) } ) ⟩ ) sSet ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) ⟩ ) )
14 13 fveq2d ( 𝐻 ∈ V → ( 𝐸𝐺 ) = ( 𝐸 ‘ ( ( 𝐻 sSet ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝐻 ) ( 𝑦 ( -g𝐻 ) 𝑥 ) ) } ) ⟩ ) sSet ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) ⟩ ) ) )
15 7 14 eqtr4id ( 𝐻 ∈ V → ( 𝐸𝐻 ) = ( 𝐸𝐺 ) )
16 2 str0 ∅ = ( 𝐸 ‘ ∅ )
17 16 eqcomi ( 𝐸 ‘ ∅ ) = ∅
18 17 1 fveqprc ( ¬ 𝐻 ∈ V → ( 𝐸𝐻 ) = ( 𝐸𝐺 ) )
19 15 18 pm2.61i ( 𝐸𝐻 ) = ( 𝐸𝐺 )