Step |
Hyp |
Ref |
Expression |
1 |
|
ttgval.n |
⊢ 𝐺 = ( toTG ‘ 𝐻 ) |
2 |
|
ttglem.2 |
⊢ 𝐸 = Slot 𝑁 |
3 |
|
ttglem.3 |
⊢ 𝑁 ∈ ℕ |
4 |
|
ttglem.4 |
⊢ 𝑁 < ; 1 6 |
5 |
2 3
|
ndxid |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
6 |
3
|
nnrei |
⊢ 𝑁 ∈ ℝ |
7 |
6 4
|
ltneii |
⊢ 𝑁 ≠ ; 1 6 |
8 |
2 3
|
ndxarg |
⊢ ( 𝐸 ‘ ndx ) = 𝑁 |
9 |
|
itvndx |
⊢ ( Itv ‘ ndx ) = ; 1 6 |
10 |
8 9
|
neeq12i |
⊢ ( ( 𝐸 ‘ ndx ) ≠ ( Itv ‘ ndx ) ↔ 𝑁 ≠ ; 1 6 ) |
11 |
7 10
|
mpbir |
⊢ ( 𝐸 ‘ ndx ) ≠ ( Itv ‘ ndx ) |
12 |
5 11
|
setsnid |
⊢ ( 𝐸 ‘ 𝐻 ) = ( 𝐸 ‘ ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) ) |
13 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
14 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
15 |
|
7nn |
⊢ 7 ∈ ℕ |
16 |
|
6lt7 |
⊢ 6 < 7 |
17 |
13 14 15 16
|
declt |
⊢ ; 1 6 < ; 1 7 |
18 |
|
6nn |
⊢ 6 ∈ ℕ |
19 |
13 18
|
decnncl |
⊢ ; 1 6 ∈ ℕ |
20 |
19
|
nnrei |
⊢ ; 1 6 ∈ ℝ |
21 |
13 15
|
decnncl |
⊢ ; 1 7 ∈ ℕ |
22 |
21
|
nnrei |
⊢ ; 1 7 ∈ ℝ |
23 |
6 20 22
|
lttri |
⊢ ( ( 𝑁 < ; 1 6 ∧ ; 1 6 < ; 1 7 ) → 𝑁 < ; 1 7 ) |
24 |
4 17 23
|
mp2an |
⊢ 𝑁 < ; 1 7 |
25 |
6 24
|
ltneii |
⊢ 𝑁 ≠ ; 1 7 |
26 |
|
lngndx |
⊢ ( LineG ‘ ndx ) = ; 1 7 |
27 |
8 26
|
neeq12i |
⊢ ( ( 𝐸 ‘ ndx ) ≠ ( LineG ‘ ndx ) ↔ 𝑁 ≠ ; 1 7 ) |
28 |
25 27
|
mpbir |
⊢ ( 𝐸 ‘ ndx ) ≠ ( LineG ‘ ndx ) |
29 |
5 28
|
setsnid |
⊢ ( 𝐸 ‘ ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) ) = ( 𝐸 ‘ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) |
30 |
12 29
|
eqtri |
⊢ ( 𝐸 ‘ 𝐻 ) = ( 𝐸 ‘ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
32 |
|
eqid |
⊢ ( -g ‘ 𝐻 ) = ( -g ‘ 𝐻 ) |
33 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐻 ) = ( ·𝑠 ‘ 𝐻 ) |
34 |
|
eqid |
⊢ ( Itv ‘ 𝐺 ) = ( Itv ‘ 𝐺 ) |
35 |
1 31 32 33 34
|
ttgval |
⊢ ( 𝐻 ∈ V → ( 𝐺 = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ∧ ( Itv ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) ) ) |
36 |
35
|
simpld |
⊢ ( 𝐻 ∈ V → 𝐺 = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) |
37 |
36
|
fveq2d |
⊢ ( 𝐻 ∈ V → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ { 𝑧 ∈ ( Base ‘ 𝐻 ) ∣ ( 𝑧 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) ) |
38 |
30 37
|
eqtr4id |
⊢ ( 𝐻 ∈ V → ( 𝐸 ‘ 𝐻 ) = ( 𝐸 ‘ 𝐺 ) ) |
39 |
2
|
str0 |
⊢ ∅ = ( 𝐸 ‘ ∅ ) |
40 |
|
fvprc |
⊢ ( ¬ 𝐻 ∈ V → ( 𝐸 ‘ 𝐻 ) = ∅ ) |
41 |
|
fvprc |
⊢ ( ¬ 𝐻 ∈ V → ( toTG ‘ 𝐻 ) = ∅ ) |
42 |
1 41
|
syl5eq |
⊢ ( ¬ 𝐻 ∈ V → 𝐺 = ∅ ) |
43 |
42
|
fveq2d |
⊢ ( ¬ 𝐻 ∈ V → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ∅ ) ) |
44 |
39 40 43
|
3eqtr4a |
⊢ ( ¬ 𝐻 ∈ V → ( 𝐸 ‘ 𝐻 ) = ( 𝐸 ‘ 𝐺 ) ) |
45 |
38 44
|
pm2.61i |
⊢ ( 𝐸 ‘ 𝐻 ) = ( 𝐸 ‘ 𝐺 ) |