| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttgval.n | ⊢ 𝐺  =  ( toTG ‘ 𝐻 ) | 
						
							| 2 |  | ttglemOLD.2 | ⊢ 𝐸  =  Slot  𝑁 | 
						
							| 3 |  | ttglemOLD.3 | ⊢ 𝑁  ∈  ℕ | 
						
							| 4 |  | ttglemOLD.4 | ⊢ 𝑁  <  ; 1 6 | 
						
							| 5 | 2 3 | ndxid | ⊢ 𝐸  =  Slot  ( 𝐸 ‘ ndx ) | 
						
							| 6 | 3 | nnrei | ⊢ 𝑁  ∈  ℝ | 
						
							| 7 | 6 4 | ltneii | ⊢ 𝑁  ≠  ; 1 6 | 
						
							| 8 | 2 3 | ndxarg | ⊢ ( 𝐸 ‘ ndx )  =  𝑁 | 
						
							| 9 |  | itvndx | ⊢ ( Itv ‘ ndx )  =  ; 1 6 | 
						
							| 10 | 8 9 | neeq12i | ⊢ ( ( 𝐸 ‘ ndx )  ≠  ( Itv ‘ ndx )  ↔  𝑁  ≠  ; 1 6 ) | 
						
							| 11 | 7 10 | mpbir | ⊢ ( 𝐸 ‘ ndx )  ≠  ( Itv ‘ ndx ) | 
						
							| 12 | 5 11 | setsnid | ⊢ ( 𝐸 ‘ 𝐻 )  =  ( 𝐸 ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) ) | 
						
							| 13 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 14 |  | 6nn0 | ⊢ 6  ∈  ℕ0 | 
						
							| 15 |  | 7nn | ⊢ 7  ∈  ℕ | 
						
							| 16 |  | 6lt7 | ⊢ 6  <  7 | 
						
							| 17 | 13 14 15 16 | declt | ⊢ ; 1 6  <  ; 1 7 | 
						
							| 18 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 19 | 13 18 | decnncl | ⊢ ; 1 6  ∈  ℕ | 
						
							| 20 | 19 | nnrei | ⊢ ; 1 6  ∈  ℝ | 
						
							| 21 | 13 15 | decnncl | ⊢ ; 1 7  ∈  ℕ | 
						
							| 22 | 21 | nnrei | ⊢ ; 1 7  ∈  ℝ | 
						
							| 23 | 6 20 22 | lttri | ⊢ ( ( 𝑁  <  ; 1 6  ∧  ; 1 6  <  ; 1 7 )  →  𝑁  <  ; 1 7 ) | 
						
							| 24 | 4 17 23 | mp2an | ⊢ 𝑁  <  ; 1 7 | 
						
							| 25 | 6 24 | ltneii | ⊢ 𝑁  ≠  ; 1 7 | 
						
							| 26 |  | lngndx | ⊢ ( LineG ‘ ndx )  =  ; 1 7 | 
						
							| 27 | 8 26 | neeq12i | ⊢ ( ( 𝐸 ‘ ndx )  ≠  ( LineG ‘ ndx )  ↔  𝑁  ≠  ; 1 7 ) | 
						
							| 28 | 25 27 | mpbir | ⊢ ( 𝐸 ‘ ndx )  ≠  ( LineG ‘ ndx ) | 
						
							| 29 | 5 28 | setsnid | ⊢ ( 𝐸 ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 ) )  =  ( 𝐸 ‘ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ( 𝑧  ∈  ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 30 | 12 29 | eqtri | ⊢ ( 𝐸 ‘ 𝐻 )  =  ( 𝐸 ‘ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ( 𝑧  ∈  ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 32 |  | eqid | ⊢ ( -g ‘ 𝐻 )  =  ( -g ‘ 𝐻 ) | 
						
							| 33 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐻 )  =  (  ·𝑠  ‘ 𝐻 ) | 
						
							| 34 |  | eqid | ⊢ ( Itv ‘ 𝐺 )  =  ( Itv ‘ 𝐺 ) | 
						
							| 35 | 1 31 32 33 34 | ttgval | ⊢ ( 𝐻  ∈  V  →  ( 𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ( 𝑧  ∈  ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 )  ∧  ( Itv ‘ 𝐺 )  =  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) ) ) | 
						
							| 36 | 35 | simpld | ⊢ ( 𝐻  ∈  V  →  𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ( 𝑧  ∈  ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 37 | 36 | fveq2d | ⊢ ( 𝐻  ∈  V  →  ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝐻 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝐻 ) ( 𝑦 ( -g ‘ 𝐻 ) 𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝐻 ) ,  𝑦  ∈  ( Base ‘ 𝐻 )  ↦  { 𝑧  ∈  ( Base ‘ 𝐻 )  ∣  ( 𝑧  ∈  ( 𝑥 ( Itv ‘ 𝐺 ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( Itv ‘ 𝐺 ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( Itv ‘ 𝐺 ) 𝑧 ) ) } ) 〉 ) ) ) | 
						
							| 38 | 30 37 | eqtr4id | ⊢ ( 𝐻  ∈  V  →  ( 𝐸 ‘ 𝐻 )  =  ( 𝐸 ‘ 𝐺 ) ) | 
						
							| 39 | 2 | str0 | ⊢ ∅  =  ( 𝐸 ‘ ∅ ) | 
						
							| 40 |  | fvprc | ⊢ ( ¬  𝐻  ∈  V  →  ( 𝐸 ‘ 𝐻 )  =  ∅ ) | 
						
							| 41 |  | fvprc | ⊢ ( ¬  𝐻  ∈  V  →  ( toTG ‘ 𝐻 )  =  ∅ ) | 
						
							| 42 | 1 41 | eqtrid | ⊢ ( ¬  𝐻  ∈  V  →  𝐺  =  ∅ ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( ¬  𝐻  ∈  V  →  ( 𝐸 ‘ 𝐺 )  =  ( 𝐸 ‘ ∅ ) ) | 
						
							| 44 | 39 40 43 | 3eqtr4a | ⊢ ( ¬  𝐻  ∈  V  →  ( 𝐸 ‘ 𝐻 )  =  ( 𝐸 ‘ 𝐺 ) ) | 
						
							| 45 | 38 44 | pm2.61i | ⊢ ( 𝐸 ‘ 𝐻 )  =  ( 𝐸 ‘ 𝐺 ) |