| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttgval.n |  |-  G = ( toTG ` H ) | 
						
							| 2 |  | ttglemOLD.2 |  |-  E = Slot N | 
						
							| 3 |  | ttglemOLD.3 |  |-  N e. NN | 
						
							| 4 |  | ttglemOLD.4 |  |-  N < ; 1 6 | 
						
							| 5 | 2 3 | ndxid |  |-  E = Slot ( E ` ndx ) | 
						
							| 6 | 3 | nnrei |  |-  N e. RR | 
						
							| 7 | 6 4 | ltneii |  |-  N =/= ; 1 6 | 
						
							| 8 | 2 3 | ndxarg |  |-  ( E ` ndx ) = N | 
						
							| 9 |  | itvndx |  |-  ( Itv ` ndx ) = ; 1 6 | 
						
							| 10 | 8 9 | neeq12i |  |-  ( ( E ` ndx ) =/= ( Itv ` ndx ) <-> N =/= ; 1 6 ) | 
						
							| 11 | 7 10 | mpbir |  |-  ( E ` ndx ) =/= ( Itv ` ndx ) | 
						
							| 12 | 5 11 | setsnid |  |-  ( E ` H ) = ( E ` ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) ) | 
						
							| 13 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 14 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 15 |  | 7nn |  |-  7 e. NN | 
						
							| 16 |  | 6lt7 |  |-  6 < 7 | 
						
							| 17 | 13 14 15 16 | declt |  |-  ; 1 6 < ; 1 7 | 
						
							| 18 |  | 6nn |  |-  6 e. NN | 
						
							| 19 | 13 18 | decnncl |  |-  ; 1 6 e. NN | 
						
							| 20 | 19 | nnrei |  |-  ; 1 6 e. RR | 
						
							| 21 | 13 15 | decnncl |  |-  ; 1 7 e. NN | 
						
							| 22 | 21 | nnrei |  |-  ; 1 7 e. RR | 
						
							| 23 | 6 20 22 | lttri |  |-  ( ( N < ; 1 6 /\ ; 1 6 < ; 1 7 ) -> N < ; 1 7 ) | 
						
							| 24 | 4 17 23 | mp2an |  |-  N < ; 1 7 | 
						
							| 25 | 6 24 | ltneii |  |-  N =/= ; 1 7 | 
						
							| 26 |  | lngndx |  |-  ( LineG ` ndx ) = ; 1 7 | 
						
							| 27 | 8 26 | neeq12i |  |-  ( ( E ` ndx ) =/= ( LineG ` ndx ) <-> N =/= ; 1 7 ) | 
						
							| 28 | 25 27 | mpbir |  |-  ( E ` ndx ) =/= ( LineG ` ndx ) | 
						
							| 29 | 5 28 | setsnid |  |-  ( E ` ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) ) = ( E ` ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) | 
						
							| 30 | 12 29 | eqtri |  |-  ( E ` H ) = ( E ` ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) | 
						
							| 31 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 32 |  | eqid |  |-  ( -g ` H ) = ( -g ` H ) | 
						
							| 33 |  | eqid |  |-  ( .s ` H ) = ( .s ` H ) | 
						
							| 34 |  | eqid |  |-  ( Itv ` G ) = ( Itv ` G ) | 
						
							| 35 | 1 31 32 33 34 | ttgval |  |-  ( H e. _V -> ( G = ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) /\ ( Itv ` G ) = ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) ) ) | 
						
							| 36 | 35 | simpld |  |-  ( H e. _V -> G = ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) | 
						
							| 37 | 36 | fveq2d |  |-  ( H e. _V -> ( E ` G ) = ( E ` ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) ) | 
						
							| 38 | 30 37 | eqtr4id |  |-  ( H e. _V -> ( E ` H ) = ( E ` G ) ) | 
						
							| 39 | 2 | str0 |  |-  (/) = ( E ` (/) ) | 
						
							| 40 |  | fvprc |  |-  ( -. H e. _V -> ( E ` H ) = (/) ) | 
						
							| 41 |  | fvprc |  |-  ( -. H e. _V -> ( toTG ` H ) = (/) ) | 
						
							| 42 | 1 41 | eqtrid |  |-  ( -. H e. _V -> G = (/) ) | 
						
							| 43 | 42 | fveq2d |  |-  ( -. H e. _V -> ( E ` G ) = ( E ` (/) ) ) | 
						
							| 44 | 39 40 43 | 3eqtr4a |  |-  ( -. H e. _V -> ( E ` H ) = ( E ` G ) ) | 
						
							| 45 | 38 44 | pm2.61i |  |-  ( E ` H ) = ( E ` G ) |