Step |
Hyp |
Ref |
Expression |
1 |
|
ttgval.n |
|- G = ( toTG ` H ) |
2 |
|
ttglemOLD.2 |
|- E = Slot N |
3 |
|
ttglemOLD.3 |
|- N e. NN |
4 |
|
ttglemOLD.4 |
|- N < ; 1 6 |
5 |
2 3
|
ndxid |
|- E = Slot ( E ` ndx ) |
6 |
3
|
nnrei |
|- N e. RR |
7 |
6 4
|
ltneii |
|- N =/= ; 1 6 |
8 |
2 3
|
ndxarg |
|- ( E ` ndx ) = N |
9 |
|
itvndx |
|- ( Itv ` ndx ) = ; 1 6 |
10 |
8 9
|
neeq12i |
|- ( ( E ` ndx ) =/= ( Itv ` ndx ) <-> N =/= ; 1 6 ) |
11 |
7 10
|
mpbir |
|- ( E ` ndx ) =/= ( Itv ` ndx ) |
12 |
5 11
|
setsnid |
|- ( E ` H ) = ( E ` ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) ) |
13 |
|
1nn0 |
|- 1 e. NN0 |
14 |
|
6nn0 |
|- 6 e. NN0 |
15 |
|
7nn |
|- 7 e. NN |
16 |
|
6lt7 |
|- 6 < 7 |
17 |
13 14 15 16
|
declt |
|- ; 1 6 < ; 1 7 |
18 |
|
6nn |
|- 6 e. NN |
19 |
13 18
|
decnncl |
|- ; 1 6 e. NN |
20 |
19
|
nnrei |
|- ; 1 6 e. RR |
21 |
13 15
|
decnncl |
|- ; 1 7 e. NN |
22 |
21
|
nnrei |
|- ; 1 7 e. RR |
23 |
6 20 22
|
lttri |
|- ( ( N < ; 1 6 /\ ; 1 6 < ; 1 7 ) -> N < ; 1 7 ) |
24 |
4 17 23
|
mp2an |
|- N < ; 1 7 |
25 |
6 24
|
ltneii |
|- N =/= ; 1 7 |
26 |
|
lngndx |
|- ( LineG ` ndx ) = ; 1 7 |
27 |
8 26
|
neeq12i |
|- ( ( E ` ndx ) =/= ( LineG ` ndx ) <-> N =/= ; 1 7 ) |
28 |
25 27
|
mpbir |
|- ( E ` ndx ) =/= ( LineG ` ndx ) |
29 |
5 28
|
setsnid |
|- ( E ` ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) ) = ( E ` ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) |
30 |
12 29
|
eqtri |
|- ( E ` H ) = ( E ` ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) |
31 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
32 |
|
eqid |
|- ( -g ` H ) = ( -g ` H ) |
33 |
|
eqid |
|- ( .s ` H ) = ( .s ` H ) |
34 |
|
eqid |
|- ( Itv ` G ) = ( Itv ` G ) |
35 |
1 31 32 33 34
|
ttgval |
|- ( H e. _V -> ( G = ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) /\ ( Itv ` G ) = ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) ) ) |
36 |
35
|
simpld |
|- ( H e. _V -> G = ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) |
37 |
36
|
fveq2d |
|- ( H e. _V -> ( E ` G ) = ( E ` ( ( H sSet <. ( Itv ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` H ) x ) = ( k ( .s ` H ) ( y ( -g ` H ) x ) ) } ) >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` H ) , y e. ( Base ` H ) |-> { z e. ( Base ` H ) | ( z e. ( x ( Itv ` G ) y ) \/ x e. ( z ( Itv ` G ) y ) \/ y e. ( x ( Itv ` G ) z ) ) } ) >. ) ) ) |
38 |
30 37
|
eqtr4id |
|- ( H e. _V -> ( E ` H ) = ( E ` G ) ) |
39 |
2
|
str0 |
|- (/) = ( E ` (/) ) |
40 |
|
fvprc |
|- ( -. H e. _V -> ( E ` H ) = (/) ) |
41 |
|
fvprc |
|- ( -. H e. _V -> ( toTG ` H ) = (/) ) |
42 |
1 41
|
syl5eq |
|- ( -. H e. _V -> G = (/) ) |
43 |
42
|
fveq2d |
|- ( -. H e. _V -> ( E ` G ) = ( E ` (/) ) ) |
44 |
39 40 43
|
3eqtr4a |
|- ( -. H e. _V -> ( E ` H ) = ( E ` G ) ) |
45 |
38 44
|
pm2.61i |
|- ( E ` H ) = ( E ` G ) |