| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttgval.n | ⊢ 𝐺  =  ( toTG ‘ 𝐻 ) | 
						
							| 2 |  | ttgbas.1 | ⊢ 𝐵  =  ( Base ‘ 𝐻 ) | 
						
							| 3 |  | baseid | ⊢ Base  =  Slot  ( Base ‘ ndx ) | 
						
							| 4 |  | slotslnbpsd | ⊢ ( ( ( LineG ‘ ndx )  ≠  ( Base ‘ ndx )  ∧  ( LineG ‘ ndx )  ≠  ( +g ‘ ndx ) )  ∧  ( ( LineG ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ∧  ( LineG ‘ ndx )  ≠  ( dist ‘ ndx ) ) ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( ( LineG ‘ ndx )  ≠  ( Base ‘ ndx )  ∧  ( LineG ‘ ndx )  ≠  ( +g ‘ ndx ) )  ∧  ( ( LineG ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ∧  ( LineG ‘ ndx )  ≠  ( dist ‘ ndx ) ) )  →  ( LineG ‘ ndx )  ≠  ( Base ‘ ndx ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( LineG ‘ ndx )  ≠  ( Base ‘ ndx ) | 
						
							| 7 | 6 | necomi | ⊢ ( Base ‘ ndx )  ≠  ( LineG ‘ ndx ) | 
						
							| 8 |  | slotsinbpsd | ⊢ ( ( ( Itv ‘ ndx )  ≠  ( Base ‘ ndx )  ∧  ( Itv ‘ ndx )  ≠  ( +g ‘ ndx ) )  ∧  ( ( Itv ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ∧  ( Itv ‘ ndx )  ≠  ( dist ‘ ndx ) ) ) | 
						
							| 9 |  | simpll | ⊢ ( ( ( ( Itv ‘ ndx )  ≠  ( Base ‘ ndx )  ∧  ( Itv ‘ ndx )  ≠  ( +g ‘ ndx ) )  ∧  ( ( Itv ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ∧  ( Itv ‘ ndx )  ≠  ( dist ‘ ndx ) ) )  →  ( Itv ‘ ndx )  ≠  ( Base ‘ ndx ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( Itv ‘ ndx )  ≠  ( Base ‘ ndx ) | 
						
							| 11 | 10 | necomi | ⊢ ( Base ‘ ndx )  ≠  ( Itv ‘ ndx ) | 
						
							| 12 | 1 3 7 11 | ttglem | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐺 ) | 
						
							| 13 | 2 12 | eqtri | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) |