Metamath Proof Explorer


Theorem slotslnbpsd

Description: The slots Base , +g , .s and dist are different from the slot LineG . Formerly part of ttglem and proofs using it. (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion slotslnbpsd
|- ( ( ( LineG ` ndx ) =/= ( Base ` ndx ) /\ ( LineG ` ndx ) =/= ( +g ` ndx ) ) /\ ( ( LineG ` ndx ) =/= ( .s ` ndx ) /\ ( LineG ` ndx ) =/= ( dist ` ndx ) ) )

Proof

Step Hyp Ref Expression
1 lngndx
 |-  ( LineG ` ndx ) = ; 1 7
2 1re
 |-  1 e. RR
3 1nn
 |-  1 e. NN
4 7nn0
 |-  7 e. NN0
5 1nn0
 |-  1 e. NN0
6 1lt10
 |-  1 < ; 1 0
7 3 4 5 6 declti
 |-  1 < ; 1 7
8 2 7 gtneii
 |-  ; 1 7 =/= 1
9 basendx
 |-  ( Base ` ndx ) = 1
10 8 9 neeqtrri
 |-  ; 1 7 =/= ( Base ` ndx )
11 1 10 eqnetri
 |-  ( LineG ` ndx ) =/= ( Base ` ndx )
12 2re
 |-  2 e. RR
13 2nn0
 |-  2 e. NN0
14 2lt10
 |-  2 < ; 1 0
15 3 4 13 14 declti
 |-  2 < ; 1 7
16 12 15 gtneii
 |-  ; 1 7 =/= 2
17 plusgndx
 |-  ( +g ` ndx ) = 2
18 16 17 neeqtrri
 |-  ; 1 7 =/= ( +g ` ndx )
19 1 18 eqnetri
 |-  ( LineG ` ndx ) =/= ( +g ` ndx )
20 11 19 pm3.2i
 |-  ( ( LineG ` ndx ) =/= ( Base ` ndx ) /\ ( LineG ` ndx ) =/= ( +g ` ndx ) )
21 6re
 |-  6 e. RR
22 6nn0
 |-  6 e. NN0
23 6lt10
 |-  6 < ; 1 0
24 3 4 22 23 declti
 |-  6 < ; 1 7
25 21 24 gtneii
 |-  ; 1 7 =/= 6
26 vscandx
 |-  ( .s ` ndx ) = 6
27 25 26 neeqtrri
 |-  ; 1 7 =/= ( .s ` ndx )
28 1 27 eqnetri
 |-  ( LineG ` ndx ) =/= ( .s ` ndx )
29 2nn
 |-  2 e. NN
30 5 29 decnncl
 |-  ; 1 2 e. NN
31 30 nnrei
 |-  ; 1 2 e. RR
32 7nn
 |-  7 e. NN
33 2lt7
 |-  2 < 7
34 5 13 32 33 declt
 |-  ; 1 2 < ; 1 7
35 31 34 gtneii
 |-  ; 1 7 =/= ; 1 2
36 dsndx
 |-  ( dist ` ndx ) = ; 1 2
37 35 36 neeqtrri
 |-  ; 1 7 =/= ( dist ` ndx )
38 1 37 eqnetri
 |-  ( LineG ` ndx ) =/= ( dist ` ndx )
39 28 38 pm3.2i
 |-  ( ( LineG ` ndx ) =/= ( .s ` ndx ) /\ ( LineG ` ndx ) =/= ( dist ` ndx ) )
40 20 39 pm3.2i
 |-  ( ( ( LineG ` ndx ) =/= ( Base ` ndx ) /\ ( LineG ` ndx ) =/= ( +g ` ndx ) ) /\ ( ( LineG ` ndx ) =/= ( .s ` ndx ) /\ ( LineG ` ndx ) =/= ( dist ` ndx ) ) )