Description: Define a function converting a subcomplex Hilbert space to a Tarski Geometry. It does so by equipping the structure with a betweenness operation. Note that because the scalar product is applied over the interval ( 0 , 1 ) , only spaces whose scalar field is a superset of that interval can be considered. (Contributed by Thierry Arnoux, 24-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ttg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cttg | |
|
1 | vw | |
|
2 | cvv | |
|
3 | vx | |
|
4 | cbs | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | vy | |
|
8 | vz | |
|
9 | vk | |
|
10 | cc0 | |
|
11 | cicc | |
|
12 | c1 | |
|
13 | 10 12 11 | co | |
14 | 8 | cv | |
15 | csg | |
|
16 | 5 15 | cfv | |
17 | 3 | cv | |
18 | 14 17 16 | co | |
19 | 9 | cv | |
20 | cvsca | |
|
21 | 5 20 | cfv | |
22 | 7 | cv | |
23 | 22 17 16 | co | |
24 | 19 23 21 | co | |
25 | 18 24 | wceq | |
26 | 25 9 13 | wrex | |
27 | 26 8 6 | crab | |
28 | 3 7 6 6 27 | cmpo | |
29 | vi | |
|
30 | csts | |
|
31 | citv | |
|
32 | cnx | |
|
33 | 32 31 | cfv | |
34 | 29 | cv | |
35 | 33 34 | cop | |
36 | 5 35 30 | co | |
37 | clng | |
|
38 | 32 37 | cfv | |
39 | 17 22 34 | co | |
40 | 14 39 | wcel | |
41 | 14 22 34 | co | |
42 | 17 41 | wcel | |
43 | 17 14 34 | co | |
44 | 22 43 | wcel | |
45 | 40 42 44 | w3o | |
46 | 45 8 6 | crab | |
47 | 3 7 6 6 46 | cmpo | |
48 | 38 47 | cop | |
49 | 36 48 30 | co | |
50 | 29 28 49 | csb | |
51 | 1 2 50 | cmpt | |
52 | 0 51 | wceq | |