Metamath Proof Explorer


Definition df-ttg

Description: Define a function converting a subcomplex Hilbert space to a Tarski Geometry. It does so by equipping the structure with a betweenness operation. Note that because the scalar product is applied over the interval ( 0 , 1 ) , only spaces whose scalar field is a superset of that interval can be considered. (Contributed by Thierry Arnoux, 24-Mar-2019)

Ref Expression
Assertion df-ttg ⊒to𝒒Tarski=w∈VβŸΌβ¦‹x∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx/i⦌wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cttg classto𝒒Tarski
1 vw setvarw
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvarw
6 5 4 cfv classBasew
7 vy setvary
8 vz setvarz
9 vk setvark
10 cc0 class0
11 cicc class.
12 c1 class1
13 10 12 11 co class01
14 8 cv setvarz
15 csg class-𝑔
16 5 15 cfv class-w
17 3 cv setvarx
18 14 17 16 co classz-wx
19 9 cv setvark
20 cvsca class⋅𝑠
21 5 20 cfv classβ‹…w
22 7 cv setvary
23 22 17 16 co classy-wx
24 19 23 21 co classkβ‹…wy-wx
25 18 24 wceq wffz-wx=kβ‹…wy-wx
26 25 9 13 wrex wffβˆƒk∈01z-wx=kβ‹…wy-wx
27 26 8 6 crab classz∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx
28 3 7 6 6 27 cmpo classx∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx
29 vi setvari
30 csts classsSet
31 citv classItv
32 cnx classndx
33 32 31 cfv classItv⁑ndx
34 29 cv setvari
35 33 34 cop classItv⁑ndxi
36 5 35 30 co classwsSetItv⁑ndxi
37 clng classLine𝒒
38 32 37 cfv classLine𝒒⁑ndx
39 17 22 34 co classxiy
40 14 39 wcel wffz∈xiy
41 14 22 34 co classziy
42 17 41 wcel wffx∈ziy
43 17 14 34 co classxiz
44 22 43 wcel wffy∈xiz
45 40 42 44 w3o wffz∈xiy∨x∈ziy∨y∈xiz
46 45 8 6 crab classz∈Basew|z∈xiy∨x∈ziy∨y∈xiz
47 3 7 6 6 46 cmpo classx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz
48 38 47 cop classLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz
49 36 48 30 co classwsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz
50 29 28 49 csb class⦋x∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx/i⦌wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz
51 1 2 50 cmpt classw∈VβŸΌβ¦‹x∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx/i⦌wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz
52 0 51 wceq wffto𝒒Tarski=w∈VβŸΌβ¦‹x∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx/i⦌wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz