Metamath Proof Explorer


Theorem lnrfgtr

Description: A submodule of a finitely generated module over a Noetherian ring is finitely generated. Often taken as the definition of Noetherian ring. (Contributed by Stefan O'Rear, 7-Feb-2015)

Ref Expression
Hypotheses lnrfg.s
|- S = ( Scalar ` M )
lnrfgtr.u
|- U = ( LSubSp ` M )
lnrfgtr.n
|- N = ( M |`s P )
Assertion lnrfgtr
|- ( ( M e. LFinGen /\ S e. LNoeR /\ P e. U ) -> N e. LFinGen )

Proof

Step Hyp Ref Expression
1 lnrfg.s
 |-  S = ( Scalar ` M )
2 lnrfgtr.u
 |-  U = ( LSubSp ` M )
3 lnrfgtr.n
 |-  N = ( M |`s P )
4 1 lnrfg
 |-  ( ( M e. LFinGen /\ S e. LNoeR ) -> M e. LNoeM )
5 2 3 lnmlssfg
 |-  ( ( M e. LNoeM /\ P e. U ) -> N e. LFinGen )
6 4 5 stoic3
 |-  ( ( M e. LFinGen /\ S e. LNoeR /\ P e. U ) -> N e. LFinGen )