Description: A submodule of a finitely generated module over a Noetherian ring is finitely generated. Often taken as the definition of Noetherian ring. (Contributed by Stefan O'Rear, 7-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lnrfg.s | |- S = ( Scalar ` M ) |
|
lnrfgtr.u | |- U = ( LSubSp ` M ) |
||
lnrfgtr.n | |- N = ( M |`s P ) |
||
Assertion | lnrfgtr | |- ( ( M e. LFinGen /\ S e. LNoeR /\ P e. U ) -> N e. LFinGen ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnrfg.s | |- S = ( Scalar ` M ) |
|
2 | lnrfgtr.u | |- U = ( LSubSp ` M ) |
|
3 | lnrfgtr.n | |- N = ( M |`s P ) |
|
4 | 1 | lnrfg | |- ( ( M e. LFinGen /\ S e. LNoeR ) -> M e. LNoeM ) |
5 | 2 3 | lnmlssfg | |- ( ( M e. LNoeM /\ P e. U ) -> N e. LFinGen ) |
6 | 4 5 | stoic3 | |- ( ( M e. LFinGen /\ S e. LNoeR /\ P e. U ) -> N e. LFinGen ) |