Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Stefan O'Rear Noetherian rings and left modules II lnrfgtr  
				
		 
		
			
		 
		Description:   A submodule of a finitely generated module over a Noetherian ring is
       finitely generated.  Often taken as the definition of Noetherian ring.
       (Contributed by Stefan O'Rear , 7-Feb-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						lnrfg.s ⊢  𝑆   =  ( Scalar ‘ 𝑀  )  
					
						lnrfgtr.u ⊢  𝑈   =  ( LSubSp ‘ 𝑀  )  
					
						lnrfgtr.n ⊢  𝑁   =  ( 𝑀   ↾s   𝑃  )  
				
					Assertion 
					lnrfgtr ⊢   ( ( 𝑀   ∈  LFinGen  ∧  𝑆   ∈  LNoeR  ∧  𝑃   ∈  𝑈  )  →  𝑁   ∈  LFinGen )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							lnrfg.s ⊢  𝑆   =  ( Scalar ‘ 𝑀  )  
						
							2 
								
							 
							lnrfgtr.u ⊢  𝑈   =  ( LSubSp ‘ 𝑀  )  
						
							3 
								
							 
							lnrfgtr.n ⊢  𝑁   =  ( 𝑀   ↾s   𝑃  )  
						
							4 
								1 
							 
							lnrfg ⊢  ( ( 𝑀   ∈  LFinGen  ∧  𝑆   ∈  LNoeR )  →  𝑀   ∈  LNoeM )  
						
							5 
								2  3 
							 
							lnmlssfg ⊢  ( ( 𝑀   ∈  LNoeM  ∧  𝑃   ∈  𝑈  )  →  𝑁   ∈  LFinGen )  
						
							6 
								4  5 
							 
							stoic3 ⊢  ( ( 𝑀   ∈  LFinGen  ∧  𝑆   ∈  LNoeR  ∧  𝑃   ∈  𝑈  )  →  𝑁   ∈  LFinGen )