Metamath Proof Explorer


Theorem lnrfgtr

Description: A submodule of a finitely generated module over a Noetherian ring is finitely generated. Often taken as the definition of Noetherian ring. (Contributed by Stefan O'Rear, 7-Feb-2015)

Ref Expression
Hypotheses lnrfg.s 𝑆 = ( Scalar ‘ 𝑀 )
lnrfgtr.u 𝑈 = ( LSubSp ‘ 𝑀 )
lnrfgtr.n 𝑁 = ( 𝑀s 𝑃 )
Assertion lnrfgtr ( ( 𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR ∧ 𝑃𝑈 ) → 𝑁 ∈ LFinGen )

Proof

Step Hyp Ref Expression
1 lnrfg.s 𝑆 = ( Scalar ‘ 𝑀 )
2 lnrfgtr.u 𝑈 = ( LSubSp ‘ 𝑀 )
3 lnrfgtr.n 𝑁 = ( 𝑀s 𝑃 )
4 1 lnrfg ( ( 𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR ) → 𝑀 ∈ LNoeM )
5 2 3 lnmlssfg ( ( 𝑀 ∈ LNoeM ∧ 𝑃𝑈 ) → 𝑁 ∈ LFinGen )
6 4 5 stoic3 ( ( 𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR ∧ 𝑃𝑈 ) → 𝑁 ∈ LFinGen )