Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Noetherian rings and left modules II
lnrfgtr
Metamath Proof Explorer
Description: A submodule of a finitely generated module over a Noetherian ring is
finitely generated. Often taken as the definition of Noetherian ring.
(Contributed by Stefan O'Rear , 7-Feb-2015)
Ref
Expression
Hypotheses
lnrfg.s
⊢ 𝑆 = ( Scalar ‘ 𝑀 )
lnrfgtr.u
⊢ 𝑈 = ( LSubSp ‘ 𝑀 )
lnrfgtr.n
⊢ 𝑁 = ( 𝑀 ↾s 𝑃 )
Assertion
lnrfgtr
⊢ ( ( 𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR ∧ 𝑃 ∈ 𝑈 ) → 𝑁 ∈ LFinGen )
Proof
Step
Hyp
Ref
Expression
1
lnrfg.s
⊢ 𝑆 = ( Scalar ‘ 𝑀 )
2
lnrfgtr.u
⊢ 𝑈 = ( LSubSp ‘ 𝑀 )
3
lnrfgtr.n
⊢ 𝑁 = ( 𝑀 ↾s 𝑃 )
4
1
lnrfg
⊢ ( ( 𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR ) → 𝑀 ∈ LNoeM )
5
2 3
lnmlssfg
⊢ ( ( 𝑀 ∈ LNoeM ∧ 𝑃 ∈ 𝑈 ) → 𝑁 ∈ LFinGen )
6
4 5
stoic3
⊢ ( ( 𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR ∧ 𝑃 ∈ 𝑈 ) → 𝑁 ∈ LFinGen )