Metamath Proof Explorer


Theorem lnrfgtr

Description: A submodule of a finitely generated module over a Noetherian ring is finitely generated. Often taken as the definition of Noetherian ring. (Contributed by Stefan O'Rear, 7-Feb-2015)

Ref Expression
Hypotheses lnrfg.s S = Scalar M
lnrfgtr.u U = LSubSp M
lnrfgtr.n N = M 𝑠 P
Assertion lnrfgtr M LFinGen S LNoeR P U N LFinGen

Proof

Step Hyp Ref Expression
1 lnrfg.s S = Scalar M
2 lnrfgtr.u U = LSubSp M
3 lnrfgtr.n N = M 𝑠 P
4 1 lnrfg M LFinGen S LNoeR M LNoeM
5 2 3 lnmlssfg M LNoeM P U N LFinGen
6 4 5 stoic3 M LFinGen S LNoeR P U N LFinGen