Step |
Hyp |
Ref |
Expression |
1 |
|
lplnnleat.l |
|- .<_ = ( le ` K ) |
2 |
|
lplnnleat.a |
|- A = ( Atoms ` K ) |
3 |
|
lplnnleat.p |
|- P = ( LPlanes ` K ) |
4 |
|
simp1 |
|- ( ( K e. HL /\ X e. P /\ Q e. A ) -> K e. HL ) |
5 |
|
simp2 |
|- ( ( K e. HL /\ X e. P /\ Q e. A ) -> X e. P ) |
6 |
|
simp3 |
|- ( ( K e. HL /\ X e. P /\ Q e. A ) -> Q e. A ) |
7 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
8 |
1 7 2 3
|
lplnnle2at |
|- ( ( K e. HL /\ ( X e. P /\ Q e. A /\ Q e. A ) ) -> -. X .<_ ( Q ( join ` K ) Q ) ) |
9 |
4 5 6 6 8
|
syl13anc |
|- ( ( K e. HL /\ X e. P /\ Q e. A ) -> -. X .<_ ( Q ( join ` K ) Q ) ) |
10 |
7 2
|
hlatjidm |
|- ( ( K e. HL /\ Q e. A ) -> ( Q ( join ` K ) Q ) = Q ) |
11 |
10
|
3adant2 |
|- ( ( K e. HL /\ X e. P /\ Q e. A ) -> ( Q ( join ` K ) Q ) = Q ) |
12 |
11
|
breq2d |
|- ( ( K e. HL /\ X e. P /\ Q e. A ) -> ( X .<_ ( Q ( join ` K ) Q ) <-> X .<_ Q ) ) |
13 |
9 12
|
mtbid |
|- ( ( K e. HL /\ X e. P /\ Q e. A ) -> -. X .<_ Q ) |