Step |
Hyp |
Ref |
Expression |
1 |
|
lsmub1.p |
|- .(+) = ( LSSum ` G ) |
2 |
1
|
lsmss1 |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> ( T .(+) U ) = U ) |
3 |
2
|
3expia |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T C_ U -> ( T .(+) U ) = U ) ) |
4 |
1
|
lsmub1 |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( T .(+) U ) ) |
5 |
|
sseq2 |
|- ( ( T .(+) U ) = U -> ( T C_ ( T .(+) U ) <-> T C_ U ) ) |
6 |
4 5
|
syl5ibcom |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( T .(+) U ) = U -> T C_ U ) ) |
7 |
3 6
|
impbid |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T C_ U <-> ( T .(+) U ) = U ) ) |