Metamath Proof Explorer


Theorem lspeqlco

Description: Equivalence of aspan of a set of vectors of a left module defined as the intersection of all linear subspaces which each contain every vector in that set (see df-lsp ) and as the set of all linear combinations of the vectors of the set with finite support. (Contributed by AV, 20-Apr-2019)

Ref Expression
Hypothesis lspeqvlco.b
|- B = ( Base ` M )
Assertion lspeqlco
|- ( ( M e. LMod /\ V e. ~P B ) -> ( M LinCo V ) = ( ( LSpan ` M ) ` V ) )

Proof

Step Hyp Ref Expression
1 lspeqvlco.b
 |-  B = ( Base ` M )
2 1 lcosslsp
 |-  ( ( M e. LMod /\ V e. ~P B ) -> ( M LinCo V ) C_ ( ( LSpan ` M ) ` V ) )
3 1 lspsslco
 |-  ( ( M e. LMod /\ V e. ~P B ) -> ( ( LSpan ` M ) ` V ) C_ ( M LinCo V ) )
4 2 3 eqssd
 |-  ( ( M e. LMod /\ V e. ~P B ) -> ( M LinCo V ) = ( ( LSpan ` M ) ` V ) )