Step |
Hyp |
Ref |
Expression |
1 |
|
lspeqvlco.b |
|- B = ( Base ` M ) |
2 |
|
simpl |
|- ( ( M e. LMod /\ V e. ~P B ) -> M e. LMod ) |
3 |
1
|
pweqi |
|- ~P B = ~P ( Base ` M ) |
4 |
3
|
eleq2i |
|- ( V e. ~P B <-> V e. ~P ( Base ` M ) ) |
5 |
|
lincolss |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) ) -> ( M LinCo V ) e. ( LSubSp ` M ) ) |
6 |
4 5
|
sylan2b |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( M LinCo V ) e. ( LSubSp ` M ) ) |
7 |
|
lcoss |
|- ( ( M e. LMod /\ V e. ~P ( Base ` M ) ) -> V C_ ( M LinCo V ) ) |
8 |
4 7
|
sylan2b |
|- ( ( M e. LMod /\ V e. ~P B ) -> V C_ ( M LinCo V ) ) |
9 |
|
eqid |
|- ( LSubSp ` M ) = ( LSubSp ` M ) |
10 |
|
eqid |
|- ( LSpan ` M ) = ( LSpan ` M ) |
11 |
9 10
|
lspssp |
|- ( ( M e. LMod /\ ( M LinCo V ) e. ( LSubSp ` M ) /\ V C_ ( M LinCo V ) ) -> ( ( LSpan ` M ) ` V ) C_ ( M LinCo V ) ) |
12 |
2 6 8 11
|
syl3anc |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( ( LSpan ` M ) ` V ) C_ ( M LinCo V ) ) |