Metamath Proof Explorer


Theorem lspsslco

Description: Lemma for lspeqlco . (Contributed by AV, 17-Apr-2019)

Ref Expression
Hypothesis lspeqvlco.b B=BaseM
Assertion lspsslco MLModV𝒫BLSpanMVMLinCoV

Proof

Step Hyp Ref Expression
1 lspeqvlco.b B=BaseM
2 simpl MLModV𝒫BMLMod
3 1 pweqi 𝒫B=𝒫BaseM
4 3 eleq2i V𝒫BV𝒫BaseM
5 lincolss MLModV𝒫BaseMMLinCoVLSubSpM
6 4 5 sylan2b MLModV𝒫BMLinCoVLSubSpM
7 lcoss MLModV𝒫BaseMVMLinCoV
8 4 7 sylan2b MLModV𝒫BVMLinCoV
9 eqid LSubSpM=LSubSpM
10 eqid LSpanM=LSpanM
11 9 10 lspssp MLModMLinCoVLSubSpMVMLinCoVLSpanMVMLinCoV
12 2 6 8 11 syl3anc MLModV𝒫BLSpanMVMLinCoV