Metamath Proof Explorer


Theorem lspsslco

Description: Lemma for lspeqlco . (Contributed by AV, 17-Apr-2019)

Ref Expression
Hypothesis lspeqvlco.b 𝐵 = ( Base ‘ 𝑀 )
Assertion lspsslco ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ⊆ ( 𝑀 LinCo 𝑉 ) )

Proof

Step Hyp Ref Expression
1 lspeqvlco.b 𝐵 = ( Base ‘ 𝑀 )
2 simpl ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑀 ∈ LMod )
3 1 pweqi 𝒫 𝐵 = 𝒫 ( Base ‘ 𝑀 )
4 3 eleq2i ( 𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) )
5 lincolss ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑀 LinCo 𝑉 ) ∈ ( LSubSp ‘ 𝑀 ) )
6 4 5 sylan2b ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 LinCo 𝑉 ) ∈ ( LSubSp ‘ 𝑀 ) )
7 lcoss ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑉 ⊆ ( 𝑀 LinCo 𝑉 ) )
8 4 7 sylan2b ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑉 ⊆ ( 𝑀 LinCo 𝑉 ) )
9 eqid ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 )
10 eqid ( LSpan ‘ 𝑀 ) = ( LSpan ‘ 𝑀 )
11 9 10 lspssp ( ( 𝑀 ∈ LMod ∧ ( 𝑀 LinCo 𝑉 ) ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ ( 𝑀 LinCo 𝑉 ) ) → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ⊆ ( 𝑀 LinCo 𝑉 ) )
12 2 6 8 11 syl3anc ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ⊆ ( 𝑀 LinCo 𝑉 ) )