| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspeqvlco.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
simpl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑀 ∈ LMod ) |
| 3 |
1
|
pweqi |
⊢ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝑀 ) |
| 4 |
3
|
eleq2i |
⊢ ( 𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 5 |
|
lincolss |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑀 LinCo 𝑉 ) ∈ ( LSubSp ‘ 𝑀 ) ) |
| 6 |
4 5
|
sylan2b |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 LinCo 𝑉 ) ∈ ( LSubSp ‘ 𝑀 ) ) |
| 7 |
|
lcoss |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑉 ⊆ ( 𝑀 LinCo 𝑉 ) ) |
| 8 |
4 7
|
sylan2b |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑉 ⊆ ( 𝑀 LinCo 𝑉 ) ) |
| 9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 ) |
| 10 |
|
eqid |
⊢ ( LSpan ‘ 𝑀 ) = ( LSpan ‘ 𝑀 ) |
| 11 |
9 10
|
lspssp |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑀 LinCo 𝑉 ) ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ ( 𝑀 LinCo 𝑉 ) ) → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ⊆ ( 𝑀 LinCo 𝑉 ) ) |
| 12 |
2 6 8 11
|
syl3anc |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ⊆ ( 𝑀 LinCo 𝑉 ) ) |