Step |
Hyp |
Ref |
Expression |
1 |
|
elelpwi |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑣 ∈ ( Base ‘ 𝑀 ) ) |
2 |
1
|
expcom |
⊢ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ ( Base ‘ 𝑀 ) ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ ( Base ‘ 𝑀 ) ) ) |
4 |
3
|
imp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( Base ‘ 𝑀 ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
7 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) |
8 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) |
9 |
|
equequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑣 ↔ 𝑦 = 𝑣 ) ) |
10 |
9
|
ifbid |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) = if ( 𝑦 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
11 |
10
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) = ( 𝑦 ∈ 𝑉 ↦ if ( 𝑦 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
12 |
5 6 7 8 11
|
mptcfsupp |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
13 |
12
|
3expa |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) = ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
15 |
5 6 7 8 14
|
linc1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = 𝑣 ) |
16 |
15
|
3expa |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = 𝑣 ) |
17 |
16
|
eqcomd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 = ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
19 |
6 18 8
|
lmod1cl |
⊢ ( 𝑀 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
20 |
6 18 7
|
lmod0cl |
⊢ ( 𝑀 ∈ LMod → ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
21 |
19 20
|
ifcld |
⊢ ( 𝑀 ∈ LMod → if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
22 |
21
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑉 ) → if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
23 |
22
|
fmpttd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
24 |
|
fvex |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V |
25 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
26 |
|
elmapg |
⊢ ( ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ↔ ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
27 |
24 25 26
|
sylancr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ↔ ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
28 |
23 27
|
mpbird |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
29 |
|
breq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
30 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) = ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) ) |
31 |
30
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑣 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ↔ 𝑣 = ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
32 |
29 31
|
anbi12d |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ↔ ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
33 |
32
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑓 = ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) → ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ↔ ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
34 |
28 33
|
rspcedv |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑣 , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) ) → ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
35 |
13 17 34
|
mp2and |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
36 |
5 6 18
|
lcoval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑣 ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( 𝑣 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑣 ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( 𝑣 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
38 |
4 35 37
|
mpbir2and |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( 𝑀 LinCo 𝑉 ) ) |
39 |
38
|
ex |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ ( 𝑀 LinCo 𝑉 ) ) ) |
40 |
39
|
ssrdv |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑉 ⊆ ( 𝑀 LinCo 𝑉 ) ) |