Metamath Proof Explorer


Theorem lcoss

Description: A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion lcoss M LMod V 𝒫 Base M V M LinCo V

Proof

Step Hyp Ref Expression
1 elelpwi v V V 𝒫 Base M v Base M
2 1 expcom V 𝒫 Base M v V v Base M
3 2 adantl M LMod V 𝒫 Base M v V v Base M
4 3 imp M LMod V 𝒫 Base M v V v Base M
5 eqid Base M = Base M
6 eqid Scalar M = Scalar M
7 eqid 0 Scalar M = 0 Scalar M
8 eqid 1 Scalar M = 1 Scalar M
9 equequ1 x = y x = v y = v
10 9 ifbid x = y if x = v 1 Scalar M 0 Scalar M = if y = v 1 Scalar M 0 Scalar M
11 10 cbvmptv x V if x = v 1 Scalar M 0 Scalar M = y V if y = v 1 Scalar M 0 Scalar M
12 5 6 7 8 11 mptcfsupp M LMod V 𝒫 Base M v V finSupp 0 Scalar M x V if x = v 1 Scalar M 0 Scalar M
13 12 3expa M LMod V 𝒫 Base M v V finSupp 0 Scalar M x V if x = v 1 Scalar M 0 Scalar M
14 eqid x V if x = v 1 Scalar M 0 Scalar M = x V if x = v 1 Scalar M 0 Scalar M
15 5 6 7 8 14 linc1 M LMod V 𝒫 Base M v V x V if x = v 1 Scalar M 0 Scalar M linC M V = v
16 15 3expa M LMod V 𝒫 Base M v V x V if x = v 1 Scalar M 0 Scalar M linC M V = v
17 16 eqcomd M LMod V 𝒫 Base M v V v = x V if x = v 1 Scalar M 0 Scalar M linC M V
18 eqid Base Scalar M = Base Scalar M
19 6 18 8 lmod1cl M LMod 1 Scalar M Base Scalar M
20 6 18 7 lmod0cl M LMod 0 Scalar M Base Scalar M
21 19 20 ifcld M LMod if x = v 1 Scalar M 0 Scalar M Base Scalar M
22 21 ad3antrrr M LMod V 𝒫 Base M v V x V if x = v 1 Scalar M 0 Scalar M Base Scalar M
23 22 fmpttd M LMod V 𝒫 Base M v V x V if x = v 1 Scalar M 0 Scalar M : V Base Scalar M
24 fvex Base Scalar M V
25 simplr M LMod V 𝒫 Base M v V V 𝒫 Base M
26 elmapg Base Scalar M V V 𝒫 Base M x V if x = v 1 Scalar M 0 Scalar M Base Scalar M V x V if x = v 1 Scalar M 0 Scalar M : V Base Scalar M
27 24 25 26 sylancr M LMod V 𝒫 Base M v V x V if x = v 1 Scalar M 0 Scalar M Base Scalar M V x V if x = v 1 Scalar M 0 Scalar M : V Base Scalar M
28 23 27 mpbird M LMod V 𝒫 Base M v V x V if x = v 1 Scalar M 0 Scalar M Base Scalar M V
29 breq1 f = x V if x = v 1 Scalar M 0 Scalar M finSupp 0 Scalar M f finSupp 0 Scalar M x V if x = v 1 Scalar M 0 Scalar M
30 oveq1 f = x V if x = v 1 Scalar M 0 Scalar M f linC M V = x V if x = v 1 Scalar M 0 Scalar M linC M V
31 30 eqeq2d f = x V if x = v 1 Scalar M 0 Scalar M v = f linC M V v = x V if x = v 1 Scalar M 0 Scalar M linC M V
32 29 31 anbi12d f = x V if x = v 1 Scalar M 0 Scalar M finSupp 0 Scalar M f v = f linC M V finSupp 0 Scalar M x V if x = v 1 Scalar M 0 Scalar M v = x V if x = v 1 Scalar M 0 Scalar M linC M V
33 32 adantl M LMod V 𝒫 Base M v V f = x V if x = v 1 Scalar M 0 Scalar M finSupp 0 Scalar M f v = f linC M V finSupp 0 Scalar M x V if x = v 1 Scalar M 0 Scalar M v = x V if x = v 1 Scalar M 0 Scalar M linC M V
34 28 33 rspcedv M LMod V 𝒫 Base M v V finSupp 0 Scalar M x V if x = v 1 Scalar M 0 Scalar M v = x V if x = v 1 Scalar M 0 Scalar M linC M V f Base Scalar M V finSupp 0 Scalar M f v = f linC M V
35 13 17 34 mp2and M LMod V 𝒫 Base M v V f Base Scalar M V finSupp 0 Scalar M f v = f linC M V
36 5 6 18 lcoval M LMod V 𝒫 Base M v M LinCo V v Base M f Base Scalar M V finSupp 0 Scalar M f v = f linC M V
37 36 adantr M LMod V 𝒫 Base M v V v M LinCo V v Base M f Base Scalar M V finSupp 0 Scalar M f v = f linC M V
38 4 35 37 mpbir2and M LMod V 𝒫 Base M v V v M LinCo V
39 38 ex M LMod V 𝒫 Base M v V v M LinCo V
40 39 ssrdv M LMod V 𝒫 Base M V M LinCo V