Metamath Proof Explorer


Theorem lcosslsp

Description: Lemma for lspeqlco . (Contributed by AV, 20-Apr-2019)

Ref Expression
Hypothesis lspeqvlco.b 𝐵 = ( Base ‘ 𝑀 )
Assertion lcosslsp ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 LinCo 𝑉 ) ⊆ ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) )

Proof

Step Hyp Ref Expression
1 lspeqvlco.b 𝐵 = ( Base ‘ 𝑀 )
2 ellcoellss ( ( 𝑀 ∈ LMod ∧ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑠 ) → ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦𝑠 )
3 2 3exp ( 𝑀 ∈ LMod → ( 𝑠 ∈ ( LSubSp ‘ 𝑀 ) → ( 𝑉𝑠 → ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦𝑠 ) ) )
4 3 ad2antrr ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → ( 𝑠 ∈ ( LSubSp ‘ 𝑀 ) → ( 𝑉𝑠 → ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦𝑠 ) ) )
5 4 imp ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) ∧ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ) → ( 𝑉𝑠 → ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦𝑠 ) )
6 elequ1 ( 𝑦 = 𝑥 → ( 𝑦𝑠𝑥𝑠 ) )
7 6 rspcv ( 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) → ( ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦𝑠𝑥𝑠 ) )
8 7 ad2antlr ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) ∧ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ) → ( ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦𝑠𝑥𝑠 ) )
9 5 8 syld ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) ∧ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ) → ( 𝑉𝑠𝑥𝑠 ) )
10 9 ralrimiva ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → ∀ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ( 𝑉𝑠𝑥𝑠 ) )
11 vex 𝑥 ∈ V
12 11 elintrab ( 𝑥 { 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ∣ 𝑉𝑠 } ↔ ∀ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ( 𝑉𝑠𝑥𝑠 ) )
13 10 12 sylibr ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → 𝑥 { 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ∣ 𝑉𝑠 } )
14 simpll ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → 𝑀 ∈ LMod )
15 elpwi ( 𝑉 ∈ 𝒫 𝐵𝑉𝐵 )
16 15 ad2antlr ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → 𝑉𝐵 )
17 eqid ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 )
18 eqid ( LSpan ‘ 𝑀 ) = ( LSpan ‘ 𝑀 )
19 1 17 18 lspval ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) = { 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ∣ 𝑉𝑠 } )
20 14 16 19 syl2anc ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) = { 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ∣ 𝑉𝑠 } )
21 13 20 eleqtrrd ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → 𝑥 ∈ ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) )
22 21 ex ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) → 𝑥 ∈ ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ) )
23 22 ssrdv ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 LinCo 𝑉 ) ⊆ ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) )