| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspeqvlco.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
ellcoellss |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑠 ) → ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦 ∈ 𝑠 ) |
| 3 |
2
|
3exp |
⊢ ( 𝑀 ∈ LMod → ( 𝑠 ∈ ( LSubSp ‘ 𝑀 ) → ( 𝑉 ⊆ 𝑠 → ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦 ∈ 𝑠 ) ) ) |
| 4 |
3
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → ( 𝑠 ∈ ( LSubSp ‘ 𝑀 ) → ( 𝑉 ⊆ 𝑠 → ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦 ∈ 𝑠 ) ) ) |
| 5 |
4
|
imp |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) ∧ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ) → ( 𝑉 ⊆ 𝑠 → ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦 ∈ 𝑠 ) ) |
| 6 |
|
elequ1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑠 ↔ 𝑥 ∈ 𝑠 ) ) |
| 7 |
6
|
rspcv |
⊢ ( 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) → ( ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠 ) ) |
| 8 |
7
|
ad2antlr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) ∧ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ) → ( ∀ 𝑦 ∈ ( 𝑀 LinCo 𝑉 ) 𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠 ) ) |
| 9 |
5 8
|
syld |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) ∧ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ) → ( 𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠 ) ) |
| 10 |
9
|
ralrimiva |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → ∀ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ( 𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠 ) ) |
| 11 |
|
vex |
⊢ 𝑥 ∈ V |
| 12 |
11
|
elintrab |
⊢ ( 𝑥 ∈ ∩ { 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ∣ 𝑉 ⊆ 𝑠 } ↔ ∀ 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ( 𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠 ) ) |
| 13 |
10 12
|
sylibr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → 𝑥 ∈ ∩ { 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ∣ 𝑉 ⊆ 𝑠 } ) |
| 14 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → 𝑀 ∈ LMod ) |
| 15 |
|
elpwi |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → 𝑉 ⊆ 𝐵 ) |
| 16 |
15
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → 𝑉 ⊆ 𝐵 ) |
| 17 |
|
eqid |
⊢ ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 ) |
| 18 |
|
eqid |
⊢ ( LSpan ‘ 𝑀 ) = ( LSpan ‘ 𝑀 ) |
| 19 |
1 17 18
|
lspval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ⊆ 𝐵 ) → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) = ∩ { 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ∣ 𝑉 ⊆ 𝑠 } ) |
| 20 |
14 16 19
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) = ∩ { 𝑠 ∈ ( LSubSp ‘ 𝑀 ) ∣ 𝑉 ⊆ 𝑠 } ) |
| 21 |
13 20
|
eleqtrrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ) → 𝑥 ∈ ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ) |
| 22 |
21
|
ex |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) → 𝑥 ∈ ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ) ) |
| 23 |
22
|
ssrdv |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 LinCo 𝑉 ) ⊆ ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ) |