Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → 𝑀 ∈ LMod ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
3 |
|
eqid |
⊢ ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 ) |
4 |
2 3
|
lssss |
⊢ ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
6 |
|
sstr |
⊢ ( ( 𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → 𝑉 ⊆ ( Base ‘ 𝑀 ) ) |
7 |
|
fvex |
⊢ ( Base ‘ 𝑀 ) ∈ V |
8 |
7
|
ssex |
⊢ ( 𝑉 ⊆ ( Base ‘ 𝑀 ) → 𝑉 ∈ V ) |
9 |
|
elpwg |
⊢ ( 𝑉 ∈ V → ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑉 ⊆ ( Base ‘ 𝑀 ) ) ) |
10 |
9
|
biimprd |
⊢ ( 𝑉 ∈ V → ( 𝑉 ⊆ ( Base ‘ 𝑀 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
11 |
8 10
|
mpcom |
⊢ ( 𝑉 ⊆ ( Base ‘ 𝑀 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
12 |
6 11
|
syl |
⊢ ( ( 𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
13 |
12
|
ex |
⊢ ( 𝑉 ⊆ 𝑆 → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
15 |
5 14
|
mpd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
16 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
17 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
18 |
2 16 17
|
lcoval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
19 |
1 15 18
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → ( 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
20 |
|
lincellss |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝑆 ) ) |
21 |
20
|
imp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝑆 ) |
22 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( 𝑥 ∈ 𝑆 ↔ ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝑆 ) ) |
23 |
21 22
|
syl5ibr |
⊢ ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → 𝑥 ∈ 𝑆 ) ) |
24 |
23
|
expd |
⊢ ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑥 ∈ 𝑆 ) ) ) |
25 |
24
|
com12 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑥 ∈ 𝑆 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑥 ∈ 𝑆 ) ) ) |
27 |
26
|
com13 |
⊢ ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → 𝑥 ∈ 𝑆 ) ) ) |
28 |
27
|
impr |
⊢ ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → 𝑥 ∈ 𝑆 ) ) |
29 |
28
|
rexlimiva |
⊢ ( ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) → ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → 𝑥 ∈ 𝑆 ) ) |
30 |
29
|
com12 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) → 𝑥 ∈ 𝑆 ) ) |
31 |
30
|
expimpd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → 𝑥 ∈ 𝑆 ) ) |
32 |
19 31
|
sylbid |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → ( 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) → 𝑥 ∈ 𝑆 ) ) |
33 |
32
|
ralrimiv |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → ∀ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) 𝑥 ∈ 𝑆 ) |