Metamath Proof Explorer


Theorem ellcoellss

Description: Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion ellcoellss ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ∀ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) 𝑥𝑆 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → 𝑀 ∈ LMod )
2 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
3 eqid ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 )
4 2 3 lssss ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) )
5 4 3ad2ant2 ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) )
6 sstr ( ( 𝑉𝑆𝑆 ⊆ ( Base ‘ 𝑀 ) ) → 𝑉 ⊆ ( Base ‘ 𝑀 ) )
7 fvex ( Base ‘ 𝑀 ) ∈ V
8 7 ssex ( 𝑉 ⊆ ( Base ‘ 𝑀 ) → 𝑉 ∈ V )
9 elpwg ( 𝑉 ∈ V → ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑉 ⊆ ( Base ‘ 𝑀 ) ) )
10 9 biimprd ( 𝑉 ∈ V → ( 𝑉 ⊆ ( Base ‘ 𝑀 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) )
11 8 10 mpcom ( 𝑉 ⊆ ( Base ‘ 𝑀 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) )
12 6 11 syl ( ( 𝑉𝑆𝑆 ⊆ ( Base ‘ 𝑀 ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) )
13 12 ex ( 𝑉𝑆 → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) )
14 13 3ad2ant3 ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) )
15 5 14 mpd ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) )
16 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
17 eqid ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) )
18 2 16 17 lcoval ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) )
19 1 15 18 syl2anc ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ( 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) )
20 lincellss ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝑆 ) )
21 20 imp ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝑆 )
22 eleq1 ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( 𝑥𝑆 ↔ ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝑆 ) )
23 21 22 syl5ibr ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → 𝑥𝑆 ) )
24 23 expd ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑥𝑆 ) ) )
25 24 com12 ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑥𝑆 ) ) )
26 25 adantr ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑥𝑆 ) ) )
27 26 com13 ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) → ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → 𝑥𝑆 ) ) )
28 27 impr ( ( 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → 𝑥𝑆 ) )
29 28 rexlimiva ( ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) → ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → 𝑥𝑆 ) )
30 29 com12 ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) → 𝑥𝑆 ) )
31 30 expimpd ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 = ( 𝑓 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → 𝑥𝑆 ) )
32 19 31 sylbid ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ( 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) → 𝑥𝑆 ) )
33 32 ralrimiv ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ∀ 𝑥 ∈ ( 𝑀 LinCo 𝑉 ) 𝑥𝑆 )