| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspexchn2.v |
|- V = ( Base ` W ) |
| 2 |
|
lspexchn2.n |
|- N = ( LSpan ` W ) |
| 3 |
|
lspexchn2.w |
|- ( ph -> W e. LVec ) |
| 4 |
|
lspexchn2.x |
|- ( ph -> X e. V ) |
| 5 |
|
lspexchn2.y |
|- ( ph -> Y e. V ) |
| 6 |
|
lspexchn2.z |
|- ( ph -> Z e. V ) |
| 7 |
|
lspexchn2.q |
|- ( ph -> -. Y e. ( N ` { Z } ) ) |
| 8 |
|
lspexchn2.e |
|- ( ph -> -. X e. ( N ` { Z , Y } ) ) |
| 9 |
|
prcom |
|- { Z , Y } = { Y , Z } |
| 10 |
9
|
fveq2i |
|- ( N ` { Z , Y } ) = ( N ` { Y , Z } ) |
| 11 |
10
|
eleq2i |
|- ( X e. ( N ` { Z , Y } ) <-> X e. ( N ` { Y , Z } ) ) |
| 12 |
8 11
|
sylnib |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
| 13 |
1 2 3 4 5 6 7 12
|
lspexchn1 |
|- ( ph -> -. Y e. ( N ` { X , Z } ) ) |
| 14 |
|
prcom |
|- { X , Z } = { Z , X } |
| 15 |
14
|
fveq2i |
|- ( N ` { X , Z } ) = ( N ` { Z , X } ) |
| 16 |
15
|
eleq2i |
|- ( Y e. ( N ` { X , Z } ) <-> Y e. ( N ` { Z , X } ) ) |
| 17 |
13 16
|
sylnib |
|- ( ph -> -. Y e. ( N ` { Z , X } ) ) |