| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspexchn1.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspexchn1.n |  |-  N = ( LSpan ` W ) | 
						
							| 3 |  | lspexchn1.w |  |-  ( ph -> W e. LVec ) | 
						
							| 4 |  | lspexchn1.x |  |-  ( ph -> X e. V ) | 
						
							| 5 |  | lspexchn1.y |  |-  ( ph -> Y e. V ) | 
						
							| 6 |  | lspexchn1.z |  |-  ( ph -> Z e. V ) | 
						
							| 7 |  | lspexchn1.q |  |-  ( ph -> -. Y e. ( N ` { Z } ) ) | 
						
							| 8 |  | lspexchn1.e |  |-  ( ph -> -. X e. ( N ` { Y , Z } ) ) | 
						
							| 9 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 10 | 3 | adantr |  |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> W e. LVec ) | 
						
							| 11 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 12 |  | lveclmod |  |-  ( W e. LVec -> W e. LMod ) | 
						
							| 13 | 3 12 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 14 | 1 11 2 | lspsncl |  |-  ( ( W e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` W ) ) | 
						
							| 15 | 13 6 14 | syl2anc |  |-  ( ph -> ( N ` { Z } ) e. ( LSubSp ` W ) ) | 
						
							| 16 | 9 11 13 15 5 7 | lssneln0 |  |-  ( ph -> Y e. ( V \ { ( 0g ` W ) } ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Y e. ( V \ { ( 0g ` W ) } ) ) | 
						
							| 18 | 4 | adantr |  |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> X e. V ) | 
						
							| 19 | 6 | adantr |  |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Z e. V ) | 
						
							| 20 | 1 2 13 5 6 7 | lspsnne2 |  |-  ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> ( N ` { Y } ) =/= ( N ` { Z } ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Y e. ( N ` { X , Z } ) ) | 
						
							| 23 | 1 9 2 10 17 18 19 21 22 | lspexch |  |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> X e. ( N ` { Y , Z } ) ) | 
						
							| 24 | 8 23 | mtand |  |-  ( ph -> -. Y e. ( N ` { X , Z } ) ) |