| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspexchn1.v |
|- V = ( Base ` W ) |
| 2 |
|
lspexchn1.n |
|- N = ( LSpan ` W ) |
| 3 |
|
lspexchn1.w |
|- ( ph -> W e. LVec ) |
| 4 |
|
lspexchn1.x |
|- ( ph -> X e. V ) |
| 5 |
|
lspexchn1.y |
|- ( ph -> Y e. V ) |
| 6 |
|
lspexchn1.z |
|- ( ph -> Z e. V ) |
| 7 |
|
lspexchn1.q |
|- ( ph -> -. Y e. ( N ` { Z } ) ) |
| 8 |
|
lspexchn1.e |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
| 9 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> W e. LVec ) |
| 11 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 12 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 13 |
3 12
|
syl |
|- ( ph -> W e. LMod ) |
| 14 |
1 11 2
|
lspsncl |
|- ( ( W e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 15 |
13 6 14
|
syl2anc |
|- ( ph -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 16 |
9 11 13 15 5 7
|
lssneln0 |
|- ( ph -> Y e. ( V \ { ( 0g ` W ) } ) ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Y e. ( V \ { ( 0g ` W ) } ) ) |
| 18 |
4
|
adantr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> X e. V ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Z e. V ) |
| 20 |
1 2 13 5 6 7
|
lspsnne2 |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
| 22 |
|
simpr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Y e. ( N ` { X , Z } ) ) |
| 23 |
1 9 2 10 17 18 19 21 22
|
lspexch |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> X e. ( N ` { Y , Z } ) ) |
| 24 |
8 23
|
mtand |
|- ( ph -> -. Y e. ( N ` { X , Z } ) ) |