Metamath Proof Explorer


Theorem lspexchn1

Description: Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch to see if this will shorten proofs. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lspexchn1.v V=BaseW
lspexchn1.n N=LSpanW
lspexchn1.w φWLVec
lspexchn1.x φXV
lspexchn1.y φYV
lspexchn1.z φZV
lspexchn1.q φ¬YNZ
lspexchn1.e φ¬XNYZ
Assertion lspexchn1 φ¬YNXZ

Proof

Step Hyp Ref Expression
1 lspexchn1.v V=BaseW
2 lspexchn1.n N=LSpanW
3 lspexchn1.w φWLVec
4 lspexchn1.x φXV
5 lspexchn1.y φYV
6 lspexchn1.z φZV
7 lspexchn1.q φ¬YNZ
8 lspexchn1.e φ¬XNYZ
9 eqid 0W=0W
10 3 adantr φYNXZWLVec
11 eqid LSubSpW=LSubSpW
12 lveclmod WLVecWLMod
13 3 12 syl φWLMod
14 1 11 2 lspsncl WLModZVNZLSubSpW
15 13 6 14 syl2anc φNZLSubSpW
16 9 11 13 15 5 7 lssneln0 φYV0W
17 16 adantr φYNXZYV0W
18 4 adantr φYNXZXV
19 6 adantr φYNXZZV
20 1 2 13 5 6 7 lspsnne2 φNYNZ
21 20 adantr φYNXZNYNZ
22 simpr φYNXZYNXZ
23 1 9 2 10 17 18 19 21 22 lspexch φYNXZXNYZ
24 8 23 mtand φ¬YNXZ