| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspexchn1.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspexchn1.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | lspexchn1.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 4 |  | lspexchn1.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 5 |  | lspexchn1.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 6 |  | lspexchn1.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 7 |  | lspexchn1.q | ⊢ ( 𝜑  →  ¬  𝑌  ∈  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 8 |  | lspexchn1.e | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 10 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑍 } ) )  →  𝑊  ∈  LVec ) | 
						
							| 11 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 12 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 14 | 1 11 2 | lspsncl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑍  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑍 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 15 | 13 6 14 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑍 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 16 | 9 11 13 15 5 7 | lssneln0 | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑍 } ) )  →  𝑌  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 18 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑍 } ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 19 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑍 } ) )  →  𝑍  ∈  𝑉 ) | 
						
							| 20 | 1 2 13 5 6 7 | lspsnne2 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑍 } ) )  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑍 } ) )  →  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑍 } ) ) | 
						
							| 23 | 1 9 2 10 17 18 19 21 22 | lspexch | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑍 } ) )  →  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 24 | 8 23 | mtand | ⊢ ( 𝜑  →  ¬  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑍 } ) ) |