Metamath Proof Explorer


Theorem ltnegcon2

Description: Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion ltnegcon2
|- ( ( A e. RR /\ B e. RR ) -> ( A < -u B <-> B < -u A ) )

Proof

Step Hyp Ref Expression
1 renegcl
 |-  ( B e. RR -> -u B e. RR )
2 ltneg
 |-  ( ( A e. RR /\ -u B e. RR ) -> ( A < -u B <-> -u -u B < -u A ) )
3 1 2 sylan2
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < -u B <-> -u -u B < -u A ) )
4 simpr
 |-  ( ( A e. RR /\ B e. RR ) -> B e. RR )
5 4 recnd
 |-  ( ( A e. RR /\ B e. RR ) -> B e. CC )
6 5 negnegd
 |-  ( ( A e. RR /\ B e. RR ) -> -u -u B = B )
7 6 breq1d
 |-  ( ( A e. RR /\ B e. RR ) -> ( -u -u B < -u A <-> B < -u A ) )
8 3 7 bitrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < -u B <-> B < -u A ) )