Step |
Hyp |
Ref |
Expression |
1 |
|
renegcl |
|- ( B e. RR -> -u B e. RR ) |
2 |
|
ltneg |
|- ( ( A e. RR /\ -u B e. RR ) -> ( A < -u B <-> -u -u B < -u A ) ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. RR /\ B e. RR ) -> ( A < -u B <-> -u -u B < -u A ) ) |
4 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
5 |
4
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
6 |
5
|
negnegd |
|- ( ( A e. RR /\ B e. RR ) -> -u -u B = B ) |
7 |
6
|
breq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( -u -u B < -u A <-> B < -u A ) ) |
8 |
3 7
|
bitrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A < -u B <-> B < -u A ) ) |