Metamath Proof Explorer


Theorem lttrii

Description: 'Less than' is transitive. (Contributed by SN, 26-Aug-2025)

Ref Expression
Hypotheses lttrii.a
|- A e. RR
lttrii.b
|- B e. RR
lttrii.c
|- C e. RR
lttrii.1
|- A < B
lttrii.2
|- B < C
Assertion lttrii
|- A < C

Proof

Step Hyp Ref Expression
1 lttrii.a
 |-  A e. RR
2 lttrii.b
 |-  B e. RR
3 lttrii.c
 |-  C e. RR
4 lttrii.1
 |-  A < B
5 lttrii.2
 |-  B < C
6 1 2 3 lttri
 |-  ( ( A < B /\ B < C ) -> A < C )
7 4 5 6 mp2an
 |-  A < C