Metamath Proof Explorer


Theorem lttrii

Description: 'Less than' is transitive. (Contributed by SN, 26-Aug-2025)

Ref Expression
Hypotheses lttrii.a 𝐴 ∈ ℝ
lttrii.b 𝐵 ∈ ℝ
lttrii.c 𝐶 ∈ ℝ
lttrii.1 𝐴 < 𝐵
lttrii.2 𝐵 < 𝐶
Assertion lttrii 𝐴 < 𝐶

Proof

Step Hyp Ref Expression
1 lttrii.a 𝐴 ∈ ℝ
2 lttrii.b 𝐵 ∈ ℝ
3 lttrii.c 𝐶 ∈ ℝ
4 lttrii.1 𝐴 < 𝐵
5 lttrii.2 𝐵 < 𝐶
6 1 2 3 lttri ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 )
7 4 5 6 mp2an 𝐴 < 𝐶