Metamath Proof Explorer
Description: 'Less than' is transitive. (Contributed by SN, 26-Aug-2025)
|
|
Ref |
Expression |
|
Hypotheses |
lttrii.a |
⊢ 𝐴 ∈ ℝ |
|
|
lttrii.b |
⊢ 𝐵 ∈ ℝ |
|
|
lttrii.c |
⊢ 𝐶 ∈ ℝ |
|
|
lttrii.1 |
⊢ 𝐴 < 𝐵 |
|
|
lttrii.2 |
⊢ 𝐵 < 𝐶 |
|
Assertion |
lttrii |
⊢ 𝐴 < 𝐶 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lttrii.a |
⊢ 𝐴 ∈ ℝ |
2 |
|
lttrii.b |
⊢ 𝐵 ∈ ℝ |
3 |
|
lttrii.c |
⊢ 𝐶 ∈ ℝ |
4 |
|
lttrii.1 |
⊢ 𝐴 < 𝐵 |
5 |
|
lttrii.2 |
⊢ 𝐵 < 𝐶 |
6 |
1 2 3
|
lttri |
⊢ ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) |
7 |
4 5 6
|
mp2an |
⊢ 𝐴 < 𝐶 |