Metamath Proof Explorer
Description: 'Less than' is transitive. (Contributed by SN, 26-Aug-2025)
|
|
Ref |
Expression |
|
Hypotheses |
lttrii.a |
⊢ 𝐴 ∈ ℝ |
|
|
lttrii.b |
⊢ 𝐵 ∈ ℝ |
|
|
lttrii.c |
⊢ 𝐶 ∈ ℝ |
|
|
lttrii.1 |
⊢ 𝐴 < 𝐵 |
|
|
lttrii.2 |
⊢ 𝐵 < 𝐶 |
|
Assertion |
lttrii |
⊢ 𝐴 < 𝐶 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lttrii.a |
⊢ 𝐴 ∈ ℝ |
| 2 |
|
lttrii.b |
⊢ 𝐵 ∈ ℝ |
| 3 |
|
lttrii.c |
⊢ 𝐶 ∈ ℝ |
| 4 |
|
lttrii.1 |
⊢ 𝐴 < 𝐵 |
| 5 |
|
lttrii.2 |
⊢ 𝐵 < 𝐶 |
| 6 |
1 2 3
|
lttri |
⊢ ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) |
| 7 |
4 5 6
|
mp2an |
⊢ 𝐴 < 𝐶 |