Metamath Proof Explorer


Theorem luklem8

Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion luklem8
|- ( ( ph -> ps ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) )

Proof

Step Hyp Ref Expression
1 luk-1
 |-  ( ( ch -> ph ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) )
2 luklem7
 |-  ( ( ( ch -> ph ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) -> ( ( ph -> ps ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ps ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) )