Description: Every vector space is isomorphic to a free module. (Contributed by AV, 7-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lvecisfrlm.f | |- F = ( Scalar ` W ) |
|
Assertion | lvecisfrlm | |- ( W e. LVec -> E. k W ~=m ( F freeLMod k ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecisfrlm.f | |- F = ( Scalar ` W ) |
|
2 | eqid | |- ( LBasis ` W ) = ( LBasis ` W ) |
|
3 | 2 | lbsex | |- ( W e. LVec -> ( LBasis ` W ) =/= (/) ) |
4 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
5 | 2 1 | lmisfree | |- ( W e. LMod -> ( ( LBasis ` W ) =/= (/) <-> E. k W ~=m ( F freeLMod k ) ) ) |
6 | 4 5 | syl | |- ( W e. LVec -> ( ( LBasis ` W ) =/= (/) <-> E. k W ~=m ( F freeLMod k ) ) ) |
7 | 3 6 | mpbid | |- ( W e. LVec -> E. k W ~=m ( F freeLMod k ) ) |