Metamath Proof Explorer


Theorem lvecisfrlm

Description: Every vector space is isomorphic to a free module. (Contributed by AV, 7-Mar-2019)

Ref Expression
Hypothesis lvecisfrlm.f
|- F = ( Scalar ` W )
Assertion lvecisfrlm
|- ( W e. LVec -> E. k W ~=m ( F freeLMod k ) )

Proof

Step Hyp Ref Expression
1 lvecisfrlm.f
 |-  F = ( Scalar ` W )
2 eqid
 |-  ( LBasis ` W ) = ( LBasis ` W )
3 2 lbsex
 |-  ( W e. LVec -> ( LBasis ` W ) =/= (/) )
4 lveclmod
 |-  ( W e. LVec -> W e. LMod )
5 2 1 lmisfree
 |-  ( W e. LMod -> ( ( LBasis ` W ) =/= (/) <-> E. k W ~=m ( F freeLMod k ) ) )
6 4 5 syl
 |-  ( W e. LVec -> ( ( LBasis ` W ) =/= (/) <-> E. k W ~=m ( F freeLMod k ) ) )
7 3 6 mpbid
 |-  ( W e. LVec -> E. k W ~=m ( F freeLMod k ) )