Metamath Proof Explorer


Theorem lvecisfrlm

Description: Every vector space is isomorphic to a free module. (Contributed by AV, 7-Mar-2019)

Ref Expression
Hypothesis lvecisfrlm.f 𝐹 = ( Scalar ‘ 𝑊 )
Assertion lvecisfrlm ( 𝑊 ∈ LVec → ∃ 𝑘 𝑊𝑚 ( 𝐹 freeLMod 𝑘 ) )

Proof

Step Hyp Ref Expression
1 lvecisfrlm.f 𝐹 = ( Scalar ‘ 𝑊 )
2 eqid ( LBasis ‘ 𝑊 ) = ( LBasis ‘ 𝑊 )
3 2 lbsex ( 𝑊 ∈ LVec → ( LBasis ‘ 𝑊 ) ≠ ∅ )
4 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
5 2 1 lmisfree ( 𝑊 ∈ LMod → ( ( LBasis ‘ 𝑊 ) ≠ ∅ ↔ ∃ 𝑘 𝑊𝑚 ( 𝐹 freeLMod 𝑘 ) ) )
6 4 5 syl ( 𝑊 ∈ LVec → ( ( LBasis ‘ 𝑊 ) ≠ ∅ ↔ ∃ 𝑘 𝑊𝑚 ( 𝐹 freeLMod 𝑘 ) ) )
7 3 6 mpbid ( 𝑊 ∈ LVec → ∃ 𝑘 𝑊𝑚 ( 𝐹 freeLMod 𝑘 ) )