Description: Every vector space is isomorphic to a free module. (Contributed by AV, 7-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lvecisfrlm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
Assertion | lvecisfrlm | ⊢ ( 𝑊 ∈ LVec → ∃ 𝑘 𝑊 ≃𝑚 ( 𝐹 freeLMod 𝑘 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecisfrlm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
2 | eqid | ⊢ ( LBasis ‘ 𝑊 ) = ( LBasis ‘ 𝑊 ) | |
3 | 2 | lbsex | ⊢ ( 𝑊 ∈ LVec → ( LBasis ‘ 𝑊 ) ≠ ∅ ) |
4 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
5 | 2 1 | lmisfree | ⊢ ( 𝑊 ∈ LMod → ( ( LBasis ‘ 𝑊 ) ≠ ∅ ↔ ∃ 𝑘 𝑊 ≃𝑚 ( 𝐹 freeLMod 𝑘 ) ) ) |
6 | 4 5 | syl | ⊢ ( 𝑊 ∈ LVec → ( ( LBasis ‘ 𝑊 ) ≠ ∅ ↔ ∃ 𝑘 𝑊 ≃𝑚 ( 𝐹 freeLMod 𝑘 ) ) ) |
7 | 3 6 | mpbid | ⊢ ( 𝑊 ∈ LVec → ∃ 𝑘 𝑊 ≃𝑚 ( 𝐹 freeLMod 𝑘 ) ) |