Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
3 |
1 2
|
islmim |
⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
5 |
4 1
|
islmim |
⊢ ( 𝐺 ∈ ( 𝑅 LMIso 𝑆 ) ↔ ( 𝐺 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐺 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
6 |
|
lmhmco |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑅 LMHom 𝑆 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑅 LMHom 𝑇 ) ) |
7 |
6
|
ad2ant2r |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) ∧ ( 𝐺 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐺 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑅 LMHom 𝑇 ) ) |
8 |
|
f1oco |
⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ∧ 𝐺 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) → ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) |
9 |
8
|
ad2ant2l |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) ∧ ( 𝐺 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐺 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) |
10 |
4 2
|
islmim |
⊢ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑅 LMIso 𝑇 ) ↔ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑅 LMHom 𝑇 ) ∧ ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) ) |
11 |
7 9 10
|
sylanbrc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) ∧ ( 𝐺 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐺 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑅 LMIso 𝑇 ) ) |
12 |
3 5 11
|
syl2anb |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐺 ∈ ( 𝑅 LMIso 𝑆 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑅 LMIso 𝑇 ) ) |