Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | lmimco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | islmim | |
4 | eqid | |
|
5 | 4 1 | islmim | |
6 | lmhmco | |
|
7 | 6 | ad2ant2r | |
8 | f1oco | |
|
9 | 8 | ad2ant2l | |
10 | 4 2 | islmim | |
11 | 7 9 10 | sylanbrc | |
12 | 3 5 11 | syl2anb | |