Metamath Proof Explorer


Theorem lmimco

Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019)

Ref Expression
Assertion lmimco FSLMIsoTGRLMIsoSFGRLMIsoT

Proof

Step Hyp Ref Expression
1 eqid BaseS=BaseS
2 eqid BaseT=BaseT
3 1 2 islmim FSLMIsoTFSLMHomTF:BaseS1-1 ontoBaseT
4 eqid BaseR=BaseR
5 4 1 islmim GRLMIsoSGRLMHomSG:BaseR1-1 ontoBaseS
6 lmhmco FSLMHomTGRLMHomSFGRLMHomT
7 6 ad2ant2r FSLMHomTF:BaseS1-1 ontoBaseTGRLMHomSG:BaseR1-1 ontoBaseSFGRLMHomT
8 f1oco F:BaseS1-1 ontoBaseTG:BaseR1-1 ontoBaseSFG:BaseR1-1 ontoBaseT
9 8 ad2ant2l FSLMHomTF:BaseS1-1 ontoBaseTGRLMHomSG:BaseR1-1 ontoBaseSFG:BaseR1-1 ontoBaseT
10 4 2 islmim FGRLMIsoTFGRLMHomTFG:BaseR1-1 ontoBaseT
11 7 9 10 sylanbrc FSLMHomTF:BaseS1-1 ontoBaseTGRLMHomSG:BaseR1-1 ontoBaseSFGRLMIsoT
12 3 5 11 syl2anb FSLMIsoTGRLMIsoSFGRLMIsoT