Metamath Proof Explorer


Theorem lmictra

Description: Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019)

Ref Expression
Assertion lmictra R 𝑚 S S 𝑚 T R 𝑚 T

Proof

Step Hyp Ref Expression
1 brlmic R 𝑚 S R LMIso S
2 brlmic S 𝑚 T S LMIso T
3 n0 R LMIso S g g R LMIso S
4 n0 S LMIso T f f S LMIso T
5 lmimco f S LMIso T g R LMIso S f g R LMIso T
6 brlmici f g R LMIso T R 𝑚 T
7 5 6 syl f S LMIso T g R LMIso S R 𝑚 T
8 7 ex f S LMIso T g R LMIso S R 𝑚 T
9 8 exlimiv f f S LMIso T g R LMIso S R 𝑚 T
10 9 com12 g R LMIso S f f S LMIso T R 𝑚 T
11 10 exlimiv g g R LMIso S f f S LMIso T R 𝑚 T
12 11 imp g g R LMIso S f f S LMIso T R 𝑚 T
13 3 4 12 syl2anb R LMIso S S LMIso T R 𝑚 T
14 1 2 13 syl2anb R 𝑚 S S 𝑚 T R 𝑚 T