Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Characterization of free modules
lmictra
Next ⟩
uvcf1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
lmictra
Description:
Module isomorphism is transitive.
(Contributed by
AV
, 10-Mar-2019)
Ref
Expression
Assertion
lmictra
⊢
R
≃
𝑚
S
∧
S
≃
𝑚
T
→
R
≃
𝑚
T
Proof
Step
Hyp
Ref
Expression
1
brlmic
⊢
R
≃
𝑚
S
↔
R
LMIso
S
≠
∅
2
brlmic
⊢
S
≃
𝑚
T
↔
S
LMIso
T
≠
∅
3
n0
⊢
R
LMIso
S
≠
∅
↔
∃
g
g
∈
R
LMIso
S
4
n0
⊢
S
LMIso
T
≠
∅
↔
∃
f
f
∈
S
LMIso
T
5
lmimco
⊢
f
∈
S
LMIso
T
∧
g
∈
R
LMIso
S
→
f
∘
g
∈
R
LMIso
T
6
brlmici
⊢
f
∘
g
∈
R
LMIso
T
→
R
≃
𝑚
T
7
5
6
syl
⊢
f
∈
S
LMIso
T
∧
g
∈
R
LMIso
S
→
R
≃
𝑚
T
8
7
ex
⊢
f
∈
S
LMIso
T
→
g
∈
R
LMIso
S
→
R
≃
𝑚
T
9
8
exlimiv
⊢
∃
f
f
∈
S
LMIso
T
→
g
∈
R
LMIso
S
→
R
≃
𝑚
T
10
9
com12
⊢
g
∈
R
LMIso
S
→
∃
f
f
∈
S
LMIso
T
→
R
≃
𝑚
T
11
10
exlimiv
⊢
∃
g
g
∈
R
LMIso
S
→
∃
f
f
∈
S
LMIso
T
→
R
≃
𝑚
T
12
11
imp
⊢
∃
g
g
∈
R
LMIso
S
∧
∃
f
f
∈
S
LMIso
T
→
R
≃
𝑚
T
13
3
4
12
syl2anb
⊢
R
LMIso
S
≠
∅
∧
S
LMIso
T
≠
∅
→
R
≃
𝑚
T
14
1
2
13
syl2anb
⊢
R
≃
𝑚
S
∧
S
≃
𝑚
T
→
R
≃
𝑚
T