Metamath Proof Explorer


Theorem uvcf1o

Description: In a nonzero ring, the mapping of the index set of a free module onto the unit vectors of the free module is a 1-1 onto function. (Contributed by AV, 10-Mar-2019)

Ref Expression
Hypothesis uvcf1o.u U = R unitVec I
Assertion uvcf1o R NzRing I W U : I 1-1 onto ran U

Proof

Step Hyp Ref Expression
1 uvcf1o.u U = R unitVec I
2 eqid R freeLMod I = R freeLMod I
3 eqid Base R freeLMod I = Base R freeLMod I
4 1 2 3 uvcf1 R NzRing I W U : I 1-1 Base R freeLMod I
5 f1f1orn U : I 1-1 Base R freeLMod I U : I 1-1 onto ran U
6 4 5 syl R NzRing I W U : I 1-1 onto ran U