Metamath Proof Explorer


Theorem uvcf1o

Description: In a nonzero ring, the mapping of the index set of a free module onto the unit vectors of the free module is a 1-1 onto function. (Contributed by AV, 10-Mar-2019)

Ref Expression
Hypothesis uvcf1o.u
|- U = ( R unitVec I )
Assertion uvcf1o
|- ( ( R e. NzRing /\ I e. W ) -> U : I -1-1-onto-> ran U )

Proof

Step Hyp Ref Expression
1 uvcf1o.u
 |-  U = ( R unitVec I )
2 eqid
 |-  ( R freeLMod I ) = ( R freeLMod I )
3 eqid
 |-  ( Base ` ( R freeLMod I ) ) = ( Base ` ( R freeLMod I ) )
4 1 2 3 uvcf1
 |-  ( ( R e. NzRing /\ I e. W ) -> U : I -1-1-> ( Base ` ( R freeLMod I ) ) )
5 f1f1orn
 |-  ( U : I -1-1-> ( Base ` ( R freeLMod I ) ) -> U : I -1-1-onto-> ran U )
6 4 5 syl
 |-  ( ( R e. NzRing /\ I e. W ) -> U : I -1-1-onto-> ran U )