Step |
Hyp |
Ref |
Expression |
1 |
|
uvcff.u |
|- U = ( R unitVec I ) |
2 |
|
uvcff.y |
|- Y = ( R freeLMod I ) |
3 |
|
uvcff.b |
|- B = ( Base ` Y ) |
4 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
5 |
1 2 3
|
uvcff |
|- ( ( R e. Ring /\ I e. W ) -> U : I --> B ) |
6 |
4 5
|
sylan |
|- ( ( R e. NzRing /\ I e. W ) -> U : I --> B ) |
7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
9 |
7 8
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
10 |
9
|
ad3antrrr |
|- ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
11 |
4
|
ad3antrrr |
|- ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> R e. Ring ) |
12 |
|
simpllr |
|- ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> I e. W ) |
13 |
|
simplrl |
|- ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> i e. I ) |
14 |
1 11 12 13 7
|
uvcvv1 |
|- ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> ( ( U ` i ) ` i ) = ( 1r ` R ) ) |
15 |
|
simplrr |
|- ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> j e. I ) |
16 |
|
simpr |
|- ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> i =/= j ) |
17 |
16
|
necomd |
|- ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> j =/= i ) |
18 |
1 11 12 15 13 17 8
|
uvcvv0 |
|- ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> ( ( U ` j ) ` i ) = ( 0g ` R ) ) |
19 |
10 14 18
|
3netr4d |
|- ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> ( ( U ` i ) ` i ) =/= ( ( U ` j ) ` i ) ) |
20 |
|
fveq1 |
|- ( ( U ` i ) = ( U ` j ) -> ( ( U ` i ) ` i ) = ( ( U ` j ) ` i ) ) |
21 |
20
|
necon3i |
|- ( ( ( U ` i ) ` i ) =/= ( ( U ` j ) ` i ) -> ( U ` i ) =/= ( U ` j ) ) |
22 |
19 21
|
syl |
|- ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> ( U ` i ) =/= ( U ` j ) ) |
23 |
22
|
ex |
|- ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) -> ( i =/= j -> ( U ` i ) =/= ( U ` j ) ) ) |
24 |
23
|
necon4d |
|- ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) -> ( ( U ` i ) = ( U ` j ) -> i = j ) ) |
25 |
24
|
ralrimivva |
|- ( ( R e. NzRing /\ I e. W ) -> A. i e. I A. j e. I ( ( U ` i ) = ( U ` j ) -> i = j ) ) |
26 |
|
dff13 |
|- ( U : I -1-1-> B <-> ( U : I --> B /\ A. i e. I A. j e. I ( ( U ` i ) = ( U ` j ) -> i = j ) ) ) |
27 |
6 25 26
|
sylanbrc |
|- ( ( R e. NzRing /\ I e. W ) -> U : I -1-1-> B ) |