Metamath Proof Explorer


Theorem uvcf1

Description: In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses uvcff.u 𝑈 = ( 𝑅 unitVec 𝐼 )
uvcff.y 𝑌 = ( 𝑅 freeLMod 𝐼 )
uvcff.b 𝐵 = ( Base ‘ 𝑌 )
Assertion uvcf1 ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) → 𝑈 : 𝐼1-1𝐵 )

Proof

Step Hyp Ref Expression
1 uvcff.u 𝑈 = ( 𝑅 unitVec 𝐼 )
2 uvcff.y 𝑌 = ( 𝑅 freeLMod 𝐼 )
3 uvcff.b 𝐵 = ( Base ‘ 𝑌 )
4 nzrring ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )
5 1 2 3 uvcff ( ( 𝑅 ∈ Ring ∧ 𝐼𝑊 ) → 𝑈 : 𝐼𝐵 )
6 4 5 sylan ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) → 𝑈 : 𝐼𝐵 )
7 eqid ( 1r𝑅 ) = ( 1r𝑅 )
8 eqid ( 0g𝑅 ) = ( 0g𝑅 )
9 7 8 nzrnz ( 𝑅 ∈ NzRing → ( 1r𝑅 ) ≠ ( 0g𝑅 ) )
10 9 ad3antrrr ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) ∧ 𝑖𝑗 ) → ( 1r𝑅 ) ≠ ( 0g𝑅 ) )
11 4 ad3antrrr ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) ∧ 𝑖𝑗 ) → 𝑅 ∈ Ring )
12 simpllr ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) ∧ 𝑖𝑗 ) → 𝐼𝑊 )
13 simplrl ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) ∧ 𝑖𝑗 ) → 𝑖𝐼 )
14 1 11 12 13 7 uvcvv1 ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) ∧ 𝑖𝑗 ) → ( ( 𝑈𝑖 ) ‘ 𝑖 ) = ( 1r𝑅 ) )
15 simplrr ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) ∧ 𝑖𝑗 ) → 𝑗𝐼 )
16 simpr ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) ∧ 𝑖𝑗 ) → 𝑖𝑗 )
17 16 necomd ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) ∧ 𝑖𝑗 ) → 𝑗𝑖 )
18 1 11 12 15 13 17 8 uvcvv0 ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) ∧ 𝑖𝑗 ) → ( ( 𝑈𝑗 ) ‘ 𝑖 ) = ( 0g𝑅 ) )
19 10 14 18 3netr4d ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) ∧ 𝑖𝑗 ) → ( ( 𝑈𝑖 ) ‘ 𝑖 ) ≠ ( ( 𝑈𝑗 ) ‘ 𝑖 ) )
20 fveq1 ( ( 𝑈𝑖 ) = ( 𝑈𝑗 ) → ( ( 𝑈𝑖 ) ‘ 𝑖 ) = ( ( 𝑈𝑗 ) ‘ 𝑖 ) )
21 20 necon3i ( ( ( 𝑈𝑖 ) ‘ 𝑖 ) ≠ ( ( 𝑈𝑗 ) ‘ 𝑖 ) → ( 𝑈𝑖 ) ≠ ( 𝑈𝑗 ) )
22 19 21 syl ( ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) ∧ 𝑖𝑗 ) → ( 𝑈𝑖 ) ≠ ( 𝑈𝑗 ) )
23 22 ex ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) → ( 𝑖𝑗 → ( 𝑈𝑖 ) ≠ ( 𝑈𝑗 ) ) )
24 23 necon4d ( ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) ∧ ( 𝑖𝐼𝑗𝐼 ) ) → ( ( 𝑈𝑖 ) = ( 𝑈𝑗 ) → 𝑖 = 𝑗 ) )
25 24 ralrimivva ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) → ∀ 𝑖𝐼𝑗𝐼 ( ( 𝑈𝑖 ) = ( 𝑈𝑗 ) → 𝑖 = 𝑗 ) )
26 dff13 ( 𝑈 : 𝐼1-1𝐵 ↔ ( 𝑈 : 𝐼𝐵 ∧ ∀ 𝑖𝐼𝑗𝐼 ( ( 𝑈𝑖 ) = ( 𝑈𝑗 ) → 𝑖 = 𝑗 ) ) )
27 6 25 26 sylanbrc ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) → 𝑈 : 𝐼1-1𝐵 )