| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uvcvv.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
| 2 |
|
uvcvv.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
| 3 |
|
uvcvv.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 4 |
|
uvcvv.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) |
| 5 |
|
uvcvv1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 7 |
1 5 6
|
uvcvval |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) ∧ 𝐽 ∈ 𝐼 ) → ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐽 ) = if ( 𝐽 = 𝐽 , 1 , ( 0g ‘ 𝑅 ) ) ) |
| 8 |
2 3 4 4 7
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐽 ) = if ( 𝐽 = 𝐽 , 1 , ( 0g ‘ 𝑅 ) ) ) |
| 9 |
|
eqid |
⊢ 𝐽 = 𝐽 |
| 10 |
|
iftrue |
⊢ ( 𝐽 = 𝐽 → if ( 𝐽 = 𝐽 , 1 , ( 0g ‘ 𝑅 ) ) = 1 ) |
| 11 |
9 10
|
mp1i |
⊢ ( 𝜑 → if ( 𝐽 = 𝐽 , 1 , ( 0g ‘ 𝑅 ) ) = 1 ) |
| 12 |
8 11
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐽 ) = 1 ) |