| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uvcvv.u |
|- U = ( R unitVec I ) |
| 2 |
|
uvcvv.r |
|- ( ph -> R e. V ) |
| 3 |
|
uvcvv.i |
|- ( ph -> I e. W ) |
| 4 |
|
uvcvv.j |
|- ( ph -> J e. I ) |
| 5 |
|
uvcvv1.o |
|- .1. = ( 1r ` R ) |
| 6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 7 |
1 5 6
|
uvcvval |
|- ( ( ( R e. V /\ I e. W /\ J e. I ) /\ J e. I ) -> ( ( U ` J ) ` J ) = if ( J = J , .1. , ( 0g ` R ) ) ) |
| 8 |
2 3 4 4 7
|
syl31anc |
|- ( ph -> ( ( U ` J ) ` J ) = if ( J = J , .1. , ( 0g ` R ) ) ) |
| 9 |
|
eqid |
|- J = J |
| 10 |
|
iftrue |
|- ( J = J -> if ( J = J , .1. , ( 0g ` R ) ) = .1. ) |
| 11 |
9 10
|
mp1i |
|- ( ph -> if ( J = J , .1. , ( 0g ` R ) ) = .1. ) |
| 12 |
8 11
|
eqtrd |
|- ( ph -> ( ( U ` J ) ` J ) = .1. ) |