Metamath Proof Explorer


Theorem uvcvv1

Description: The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcvv.u U=RunitVecI
uvcvv.r φRV
uvcvv.i φIW
uvcvv.j φJI
uvcvv1.o 1˙=1R
Assertion uvcvv1 φUJJ=1˙

Proof

Step Hyp Ref Expression
1 uvcvv.u U=RunitVecI
2 uvcvv.r φRV
3 uvcvv.i φIW
4 uvcvv.j φJI
5 uvcvv1.o 1˙=1R
6 eqid 0R=0R
7 1 5 6 uvcvval RVIWJIJIUJJ=ifJ=J1˙0R
8 2 3 4 4 7 syl31anc φUJJ=ifJ=J1˙0R
9 eqid J=J
10 iftrue J=JifJ=J1˙0R=1˙
11 9 10 mp1i φifJ=J1˙0R=1˙
12 8 11 eqtrd φUJJ=1˙