Step |
Hyp |
Ref |
Expression |
1 |
|
uvcf1o.u |
|- U = ( R unitVec I ) |
2 |
1
|
ovexi |
|- U e. _V |
3 |
2
|
a1i |
|- ( ( R e. NzRing /\ I e. W ) -> U e. _V ) |
4 |
1
|
uvcf1o |
|- ( ( R e. NzRing /\ I e. W ) -> U : I -1-1-onto-> ran U ) |
5 |
|
f1oeq1 |
|- ( U = u -> ( U : I -1-1-onto-> ran U <-> u : I -1-1-onto-> ran U ) ) |
6 |
5
|
eqcoms |
|- ( u = U -> ( U : I -1-1-onto-> ran U <-> u : I -1-1-onto-> ran U ) ) |
7 |
6
|
biimpd |
|- ( u = U -> ( U : I -1-1-onto-> ran U -> u : I -1-1-onto-> ran U ) ) |
8 |
7
|
a1i |
|- ( ( R e. NzRing /\ I e. W ) -> ( u = U -> ( U : I -1-1-onto-> ran U -> u : I -1-1-onto-> ran U ) ) ) |
9 |
4 8
|
syl7 |
|- ( ( R e. NzRing /\ I e. W ) -> ( u = U -> ( ( R e. NzRing /\ I e. W ) -> u : I -1-1-onto-> ran U ) ) ) |
10 |
9
|
imp |
|- ( ( ( R e. NzRing /\ I e. W ) /\ u = U ) -> ( ( R e. NzRing /\ I e. W ) -> u : I -1-1-onto-> ran U ) ) |
11 |
3 10
|
spcimedv |
|- ( ( R e. NzRing /\ I e. W ) -> ( ( R e. NzRing /\ I e. W ) -> E. u u : I -1-1-onto-> ran U ) ) |
12 |
11
|
pm2.43i |
|- ( ( R e. NzRing /\ I e. W ) -> E. u u : I -1-1-onto-> ran U ) |
13 |
|
bren |
|- ( I ~~ ran U <-> E. u u : I -1-1-onto-> ran U ) |
14 |
12 13
|
sylibr |
|- ( ( R e. NzRing /\ I e. W ) -> I ~~ ran U ) |