| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 2 |
|
eqid |
|- ( R freeLMod I ) = ( R freeLMod I ) |
| 3 |
2
|
frlmlmod |
|- ( ( R e. Ring /\ I e. Y ) -> ( R freeLMod I ) e. LMod ) |
| 4 |
1 3
|
sylan |
|- ( ( R e. NzRing /\ I e. Y ) -> ( R freeLMod I ) e. LMod ) |
| 5 |
4
|
3adant3 |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> ( R freeLMod I ) e. LMod ) |
| 6 |
|
eqid |
|- ( R unitVec I ) = ( R unitVec I ) |
| 7 |
|
eqid |
|- ( LBasis ` ( R freeLMod I ) ) = ( LBasis ` ( R freeLMod I ) ) |
| 8 |
2 6 7
|
frlmlbs |
|- ( ( R e. Ring /\ I e. Y ) -> ran ( R unitVec I ) e. ( LBasis ` ( R freeLMod I ) ) ) |
| 9 |
1 8
|
sylan |
|- ( ( R e. NzRing /\ I e. Y ) -> ran ( R unitVec I ) e. ( LBasis ` ( R freeLMod I ) ) ) |
| 10 |
9
|
3adant3 |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> ran ( R unitVec I ) e. ( LBasis ` ( R freeLMod I ) ) ) |
| 11 |
|
simp3 |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> I ~~ J ) |
| 12 |
11
|
ensymd |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> J ~~ I ) |
| 13 |
6
|
uvcendim |
|- ( ( R e. NzRing /\ I e. Y ) -> I ~~ ran ( R unitVec I ) ) |
| 14 |
13
|
3adant3 |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> I ~~ ran ( R unitVec I ) ) |
| 15 |
|
entr |
|- ( ( J ~~ I /\ I ~~ ran ( R unitVec I ) ) -> J ~~ ran ( R unitVec I ) ) |
| 16 |
12 14 15
|
syl2anc |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> J ~~ ran ( R unitVec I ) ) |
| 17 |
|
eqid |
|- ( Scalar ` ( R freeLMod I ) ) = ( Scalar ` ( R freeLMod I ) ) |
| 18 |
17 7
|
lbslcic |
|- ( ( ( R freeLMod I ) e. LMod /\ ran ( R unitVec I ) e. ( LBasis ` ( R freeLMod I ) ) /\ J ~~ ran ( R unitVec I ) ) -> ( R freeLMod I ) ~=m ( ( Scalar ` ( R freeLMod I ) ) freeLMod J ) ) |
| 19 |
5 10 16 18
|
syl3anc |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> ( R freeLMod I ) ~=m ( ( Scalar ` ( R freeLMod I ) ) freeLMod J ) ) |
| 20 |
2
|
frlmsca |
|- ( ( R e. NzRing /\ I e. Y ) -> R = ( Scalar ` ( R freeLMod I ) ) ) |
| 21 |
20
|
3adant3 |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> R = ( Scalar ` ( R freeLMod I ) ) ) |
| 22 |
21
|
oveq1d |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> ( R freeLMod J ) = ( ( Scalar ` ( R freeLMod I ) ) freeLMod J ) ) |
| 23 |
19 22
|
breqtrrd |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> ( R freeLMod I ) ~=m ( R freeLMod J ) ) |