Step |
Hyp |
Ref |
Expression |
1 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
2 |
|
eqid |
|- ( R freeLMod I ) = ( R freeLMod I ) |
3 |
2
|
frlmlmod |
|- ( ( R e. Ring /\ I e. Y ) -> ( R freeLMod I ) e. LMod ) |
4 |
1 3
|
sylan |
|- ( ( R e. NzRing /\ I e. Y ) -> ( R freeLMod I ) e. LMod ) |
5 |
4
|
3adant3 |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> ( R freeLMod I ) e. LMod ) |
6 |
|
eqid |
|- ( R unitVec I ) = ( R unitVec I ) |
7 |
|
eqid |
|- ( LBasis ` ( R freeLMod I ) ) = ( LBasis ` ( R freeLMod I ) ) |
8 |
2 6 7
|
frlmlbs |
|- ( ( R e. Ring /\ I e. Y ) -> ran ( R unitVec I ) e. ( LBasis ` ( R freeLMod I ) ) ) |
9 |
1 8
|
sylan |
|- ( ( R e. NzRing /\ I e. Y ) -> ran ( R unitVec I ) e. ( LBasis ` ( R freeLMod I ) ) ) |
10 |
9
|
3adant3 |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> ran ( R unitVec I ) e. ( LBasis ` ( R freeLMod I ) ) ) |
11 |
|
simp3 |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> I ~~ J ) |
12 |
11
|
ensymd |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> J ~~ I ) |
13 |
6
|
uvcendim |
|- ( ( R e. NzRing /\ I e. Y ) -> I ~~ ran ( R unitVec I ) ) |
14 |
13
|
3adant3 |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> I ~~ ran ( R unitVec I ) ) |
15 |
|
entr |
|- ( ( J ~~ I /\ I ~~ ran ( R unitVec I ) ) -> J ~~ ran ( R unitVec I ) ) |
16 |
12 14 15
|
syl2anc |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> J ~~ ran ( R unitVec I ) ) |
17 |
|
eqid |
|- ( Scalar ` ( R freeLMod I ) ) = ( Scalar ` ( R freeLMod I ) ) |
18 |
17 7
|
lbslcic |
|- ( ( ( R freeLMod I ) e. LMod /\ ran ( R unitVec I ) e. ( LBasis ` ( R freeLMod I ) ) /\ J ~~ ran ( R unitVec I ) ) -> ( R freeLMod I ) ~=m ( ( Scalar ` ( R freeLMod I ) ) freeLMod J ) ) |
19 |
5 10 16 18
|
syl3anc |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> ( R freeLMod I ) ~=m ( ( Scalar ` ( R freeLMod I ) ) freeLMod J ) ) |
20 |
2
|
frlmsca |
|- ( ( R e. NzRing /\ I e. Y ) -> R = ( Scalar ` ( R freeLMod I ) ) ) |
21 |
20
|
3adant3 |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> R = ( Scalar ` ( R freeLMod I ) ) ) |
22 |
21
|
oveq1d |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> ( R freeLMod J ) = ( ( Scalar ` ( R freeLMod I ) ) freeLMod J ) ) |
23 |
19 22
|
breqtrrd |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ J ) -> ( R freeLMod I ) ~=m ( R freeLMod J ) ) |