Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( R e. NzRing /\ I e. Y ) -> I e. Y ) |
2 |
|
0ex |
|- (/) e. _V |
3 |
|
xpsneng |
|- ( ( I e. Y /\ (/) e. _V ) -> ( I X. { (/) } ) ~~ I ) |
4 |
3
|
ensymd |
|- ( ( I e. Y /\ (/) e. _V ) -> I ~~ ( I X. { (/) } ) ) |
5 |
1 2 4
|
sylancl |
|- ( ( R e. NzRing /\ I e. Y ) -> I ~~ ( I X. { (/) } ) ) |
6 |
|
frlmisfrlm |
|- ( ( R e. NzRing /\ I e. Y /\ I ~~ ( I X. { (/) } ) ) -> ( R freeLMod I ) ~=m ( R freeLMod ( I X. { (/) } ) ) ) |
7 |
5 6
|
mpd3an3 |
|- ( ( R e. NzRing /\ I e. Y ) -> ( R freeLMod I ) ~=m ( R freeLMod ( I X. { (/) } ) ) ) |