Metamath Proof Explorer


Theorem frlmiscvec

Description: Every free module is isomorphic to the free module of "column vectors" of the same dimension over the same (nonzero) ring. (Contributed by AV, 10-Mar-2019)

Ref Expression
Assertion frlmiscvec ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑌 ) → ( 𝑅 freeLMod 𝐼 ) ≃𝑚 ( 𝑅 freeLMod ( 𝐼 × { ∅ } ) ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑌 ) → 𝐼𝑌 )
2 0ex ∅ ∈ V
3 xpsneng ( ( 𝐼𝑌 ∧ ∅ ∈ V ) → ( 𝐼 × { ∅ } ) ≈ 𝐼 )
4 3 ensymd ( ( 𝐼𝑌 ∧ ∅ ∈ V ) → 𝐼 ≈ ( 𝐼 × { ∅ } ) )
5 1 2 4 sylancl ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑌 ) → 𝐼 ≈ ( 𝐼 × { ∅ } ) )
6 frlmisfrlm ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼 ≈ ( 𝐼 × { ∅ } ) ) → ( 𝑅 freeLMod 𝐼 ) ≃𝑚 ( 𝑅 freeLMod ( 𝐼 × { ∅ } ) ) )
7 5 6 mpd3an3 ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑌 ) → ( 𝑅 freeLMod 𝐼 ) ≃𝑚 ( 𝑅 freeLMod ( 𝐼 × { ∅ } ) ) )